Advertisement

Provably Secure Partially Blind Signatures

  • Masayuki Abe
  • Tatsuaki Okamoto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1880)

Abstract

Partially blind signature schemes are an extension of blind signature schemes that allow a signer to explicitly include necessary information (expiration date, collateral conditions, or whatever) in the resulting signatures under some agreement with the receiver. This paper formalizes such a notion and presents secure and efficient schemes based on a widely applicable method of obtaining witness indistinguishable protocols. We then give a formal proof of security in the random oracle model. Our approach also allows one to construct secure fully blind signature schemes based on a variety of signature schemes.

Keywords

Partially Blind Signatures Blind Signatures Witness Indistinguishability 

References

  1. 1.
    M. Abe and J. Camenisch. Partially blind signatures. In the 1997 Symposium on Cryptography and Information Security, 1997.Google Scholar
  2. 2.
    M. Abe and E. Fujisaki. How to date blind signatures. In K. Kim and T. Matsumoto, editors, Advances in Cryptology-ASIACRYPT’ 96, volume 1163 of Lecture Notes in Computer Science, pages 244–251. Springer-Verlag, 1996.CrossRefGoogle Scholar
  3. 3.
    M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient protocols. In First ACM Conference on Computer and Communication Security, pages 62–73. Association for Computing Machinery, 1993.Google Scholar
  4. 4.
    S. Brands. Untraceable off-line cash in wallet with observers. In D. Stinson, editor, Advances in Cryptology — CRYPTO’ 93, volume 773 of Lecture Notes in Computer Science, pages 302–318. Springer-Verlag, 1993.Google Scholar
  5. 5.
    D. Chaum. Blind signatures for untraceable payments. In D. Chaum, R. Rivest, and A. Sherman, editors, Advances in Cryptology — Proceedings of Crypto’ 82, pages 199–204. Prenum Publishing Corporation, 1982.Google Scholar
  6. 6.
    D. Chaum. Elections with unconditionally-secret ballots and disruption equivalent to breaking RSA. In C. G. Günther, editor, Advances in Cryptology — EUROCRYPT’ 88, volume 330 of Lecture Notes in Computer Science, pages 177–189. Springer-Verlag, 1988.CrossRefGoogle Scholar
  7. 7.
    D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In S. Goldwasser, editor, Advances in Cryptology — CRYPTO’ 88, volume 403 of Lecture Notes in Computer Science, pages 319–327. Springer-Verlag, 1990.Google Scholar
  8. 8.
    R. Cramer. personal communication, 1997.Google Scholar
  9. 9.
    R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge and simplified design of witness hiding protocols. In Y. G. Desmedt, editor, Advances in Cryptology — CRYPTO’ 94, volume 839 of Lecture Notes in Computer Science, pages 174–187. Springer-Verlag, 1994.Google Scholar
  10. 10.
    T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In G. R. Blakley and D. Chaum, editors, Advances in Cryptology — CRYPTO’ 84, volume 196 of Lecture Notes in Computer Science, pages 10–18. Springer-Verlag, 1985.Google Scholar
  11. 11.
    U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. Journal of Cryptology, 1:77–94, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for large scale elections. In J. Seberry and Y. Zheng, editors, Advances in Cryptology — A USCRYPT’ 92, volume 718 of Lecture Notes in Computer Science, pages 244–251. Springer-Verlag, 1993.Google Scholar
  13. 13.
    S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal of Computing, 17(2):281–308, April 1988.Google Scholar
  14. 14.
    L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory. In C. G. Günther, editor, Advances in Cryptology — EUROCRYPT’ 88, volume 330 of Lecture Notes in Computer Science, pages 123–128. Springer-Verlag, 1988.CrossRefGoogle Scholar
  15. 15.
    A. Juels, M. Luby, and R. Ostrovsky. Security of blind digital signatures. In B. S. Kaliski Jr., editor, Advances in Cryptology — CRYPTO’ 97, volume 1294 of Lecture Notes in Computer Science, pages 150–164. Springer-Verlag, 1997.CrossRefGoogle Scholar
  16. 16.
    A. Menezes, P. Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press, 1997.Google Scholar
  17. 17.
    K. Ohta and T. Okamoto. On concrete security treatment of signatures derived from identification. In H. Krawczyk, editor, Advances in Cryptology — CRYPTO’ 98, volume 1462 of Lecture Notes in Computer Science, pages 354–369. Springer-Verlag, 1998.CrossRefGoogle Scholar
  18. 18.
    T. Okamoto. Provably secure and practical identification schemes and corresponding signature schemes. In E. F. Brickell, editor, Advances in Cryptology — CRYPTO’ 92, volume 740 of Lecture Notes in Computer Science, pages 31–53. Springer-Verlag, 1993.Google Scholar
  19. 19.
    D. Pointcheval. Strengthened security for blind signatures. In K. Nyberg, editor, Advances in Cryptology — EUROCRYPT’ 98, Lecture Notes in Computer Science, pages 391–405. Springer-Verlag, 1998.CrossRefGoogle Scholar
  20. 20.
    D. Pointcheval and J. Stern. Provably secure blind signature schemes. In K. Kim and T. Matsumoto, editors, Advances in Cryptology-ASIACRYPT’ 96, volume 1163 of Lecture Notes in Computer Science, pages 252–265. Springer-Verlag, 1996.CrossRefGoogle Scholar
  21. 21.
    D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. Maurer, editor, Advances in Cryptology — EUROCRYPT’ 96, volume 1070 of Lecture Notes in Computer Science, pages 387–398. Springer-Verlag, 1996.Google Scholar
  22. 22.
    D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of Cryptology, 2000.Google Scholar
  23. 23.
    RSA Laboratories. PKCS ≠9: Selected Object Classes and Attribute Types, 2.0 edition, February 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Masayuki Abe
    • 1
  • Tatsuaki Okamoto
    • 1
  1. 1.NTT Laboratories Nippon Telegraph and Telephone CorporationKanagawa-kenJapan

Personalised recommendations