New Public-Key Cryptosystem Using Braid Groups

  • Ki Hyoung Ko
  • Sang Jin Lee
  • Jung Hee Cheon
  • Jae Woo Han
  • Ju-sung Kang
  • Choonsik Park
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1880)


The braid groups are infinite non-commutative groups naturally arising from geometric braids. The aim of this article is twofold. One is to show that the braid groups can serve as a good source to enrich cryptography. The feature that makes the braid groups useful to cryptography includes the followings: (i) The word problem is solved via a fast algorithm which computes the canonical form which can be efficiently manipulated by computers. (ii) The group operations can be performed efficiently. (iii) The braid groups have many mathematically hard problems that can be utilized to design cryptographic primitives. The other is to propose and implement a new key agreement scheme and public key cryptosystem based on these primitives in the braid groups. The efficiency of our systems is demonstrated by their speed and information rate. The security of our systems is based on topological, combinatorial and group-theoretical problems that are intractible according to our current mathematical knowledge. The foundation of our systems is quite different from widely used cryptosystems based on number theory, but there are some similarities in design.

Key words

public key cryptosystem braid group conjugacy problem key exchange hard problem non-commutative group one-way function public key infrastructure 


  1. 1.
    I. Anshel and M. Anshel, From the Post-Markov theorem through decision problems to public-key cryptography, Amer. Math. Monthly 100 (1993), no. 9, 835–844.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    I. Anshel, M. Anshel and D. Goldfeld, An algebraic method for public-key cryptography Mathematical Research Letters 6 (1999) 287–291.zbMATHMathSciNetGoogle Scholar
  3. 3.
    E. Artin, Theory of braids, Annals of Math. 48 (1947), 101–126.CrossRefMathSciNetGoogle Scholar
  4. 4.
    C. H. Bennet and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Proc. IEEE Int. Conf. Computers, Systems and Signal Processing (Bangalore, India, 1984), 175–179.Google Scholar
  5. 5.
    J. S. Birman, Braids, links and mapping class groups, Annals of Math. Study, no. 82, Princeton University Press (1974).Google Scholar
  6. 6.
    J. S. Birman, K. H. Ko and S. J. Lee, A new approach to the word and conjugacy problems in the braid groups, Advances in Math. 139 (1998), 322–353.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    D. Boneh, Twenty years of attacks on the RSA cryptosystem, Notices Amer. Math. Soc. 46 (1999), 203–213.zbMATHMathSciNetGoogle Scholar
  8. 8.
    G. Brassard, A note on the complexity of cryptography, IEEE Transactions on Information Theory 25 (1979), 232–233.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    E. F. Brickell, Breaking iterated knapsacks, Advances in Cryptology, Proceedings of Crypto’ 84, Lecture Notes in Computer Science 196, ed. G. R. Blakley and D. Chaum, Springer-Verlag (1985), 342–358.Google Scholar
  10. 10.
    P. Dehornoy, A fast method for comparing braids, Advances in Math. 125 (1997), 200–235.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Transactions on Informaton Theory 22 (1976), 644–654.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Transactions on Information Theory 31 (1985), 469–472.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    E. A. Elrifai and H. R. Morton, Algorithms for positive braids, Quart. J. Math. Oxford 45 (1994), no. 2, 479–497.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson and W. Thurston, Word processing in groups, Jones & Bartlett, 1992.Google Scholar
  15. 15.
    R. Fenn, D. Rolfsen and J. Zhu Centralisers in the braid group and singular braid monoid, Enseign. Math. (2) 42 (1996), no. 1–2, 75–96.zbMATHMathSciNetGoogle Scholar
  16. 16.
    F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford 20 (1969), no. 78, 235–254.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    M. Garzon and Y. Zalcstein, The complexity of Grigorchuk groups with application to cryptography, Theoretical Computer Sciences 88 (1991) 83–98.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    O. Goldreich, S. Goldwasser and S. Halevi, Public-key cryptosystems from lattice reduction problems, Advances in Cryptology, Proceedings of Crypto’ 97, Lecture Notes in Computer Science 1294, ed. B. Kaliski, Springer-Verlag (1997), 112–131.CrossRefGoogle Scholar
  19. 19.
    E. S. Kang, K. H. Ko and S. J. Lee, Band-generator presentation for the 4-braid group, Topology Appl. 78 (1997), 39–60.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    K. Komaya, U. Maurer, T. Okamoto and S. Vanston, New public-key schemes bases on elliptic curves over the ring Z n, Advances in Cryptology, Proceedings of Crypto’ 91, Lecture Notes in Computer Science 576, ed. J. Feigenbaum, Springer-Verlag (1992), 252–266Google Scholar
  21. 21.
    N. Koblitz, Algebraic aspects of cryptography, Algorithms and Computations in Mathematics 3 (1998) Springer-Verlag, Berlin.Google Scholar
  22. 22.
    J. C. Lagarias, Knapsack public key cryptosystems and Diophantine approximation, Advances in Cryptology: Proceedings of Crypto’ 83, ed. by D. Chaum, Plenum Publishing (1984), 3–24.Google Scholar
  23. 23.
    K. McCurley, A key distribution system equivalent to factoring, Journal of Cryptology 1 (1988), 95–105.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    R. C. Merkle and M. E. Hellman, Hiding information and signatures in trapdoor knapsacks, IEEE Transactions on Information Theory 24 (1978), 525–530.CrossRefGoogle Scholar
  25. 25.
    L. Mosher, Mapping class groups are automatic, Ann. Math. 142 (1995), 303–384.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    A. M. Odlyzko, The rise and fall of knapsack cryptosystems, Cryptology and Computational Number Theory, Proc. Symp. App. Math. 42 (1990), 75–88.MathSciNetGoogle Scholar
  27. 27.
    M. S. Paterson and A. A. Rasborov, The set of minimal braids is co-NP-complete, J. Algorithms. 12 (1991), 393–408.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    M. O. Rabin, Digitized signatures and public-key functions as intractible as factorization, MIT Laboratory for Computer Science Technical Report, LCS/TR-212 (1979).Google Scholar
  29. 29.
    R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public key cryptosystems, Communications of the ACM 21 (1978), 120–126.zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    A. Shamir, A polynomial time algorithm for breaking the basis Merkle-Hellman cryptosystem, Advances in Cryptology: Proceedings of Crypto’ 82, ed. by D. Chaum et al., Plenum Publishing (1983), 279–288.Google Scholar
  31. 31.
    R. Siromoney and L. Mathew, A public key cryptosystem based on Lyndon words, Information Proceeding Letters 35 (1990) 33–36.zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    P. Smith and M. Lennon, LUC: A new public key system, Proceedings of the IFIP TC11 Ninth International Conference on Information Security, ed. E. Dougall, IFIP/Sec 93, 103–117, North-Holland, 1993.Google Scholar
  33. 33.
    R. P. Stanley, Enumerative combinatorics, Wadsworth and Brooks/Cole, 1986.Google Scholar
  34. 34.
    Y. Tsiounis and M. Yung, On the security of Elgamal based encryption, In PKC’ 98, Lecture Notes in Computer Science 1431, Springer-Verlag (1998), 117–134.Google Scholar
  35. 35.
    S. Vaudenay, Cryptanalysis of the Chor-Rivest Cryptosystem, Advances in Cryptology: Proceedings of Crypto’ 98, Lecture Notes in Computer Science 1462, ed. Krawczyk, Springer-Verlag (1998), 243–256.CrossRefGoogle Scholar
  36. 36.
    H. Williams, Some public-key crypto-funtions as intractible as factorization, Advances in Cryptology, Proceedings of Crypto’ 84, Lecture Notes in Computer Science 196, ed. G. R. Blakley and D. Chaum, Springer-Verlag (1985), 66–70.Google Scholar
  37. 37.
    N. R. Wagner and M. R. Magyarik, A public-key cryptosystem based on the word problem, Advances in Cryptology, Proceedings of Crypto’ 84, Lecture Notes in Computer Science 196, ed. G. R. Blakley and D. Chaum, Springer-Verlag (1985), 19–36.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Ki Hyoung Ko
    • 1
  • Sang Jin Lee
    • 1
  • Jung Hee Cheon
    • 2
    • 3
  • Jae Woo Han
    • 4
  • Ju-sung Kang
    • 4
  • Choonsik Park
    • 4
  1. 1.Department of MathematicsKorea Advanced Institute of Science and TechnologyTaejonKorea
  2. 2.Department of MathematicsBrown universityProvidenceUSA
  3. 3.SecurepiaKorea
  4. 4.Section 8100Electronics and Telecommunications Research InstituteTaejonKorea

Personalised recommendations