Advertisement

Computational Investigation of Hemispheric Specialization and Interactions

  • James A. Reggia
  • Yuri Shkuro
  • Natalia Shevtsova
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2036)

Abstract

Current understanding of the origins of cerebral specializa- tion is fairly limited. This chapter summarizes some recent work devel- oping and studying neural models that are intended to provide a bet- ter understanding of this issue. These computational models focus on emergent lateralization and also hemispheric interactions during recovery from simulated cortical lesions. The models, consisting of corresponding left and right cortical regions connected by the corpus callosum, handle tasks such as word reading and letter classification. The results demon- strate that it is relatively easy to simulate cerebral specialization and to show that the intact, non-lesioned hemisphere is often partially respon- sible for recovery. This work demonstrates that computational models can be a useful supplement to human and animal studies of hemispheric relations, and has implications for better understanding of modularity and robustness in neurocomputational systems in general.

Keywords

Root Mean Square Error Corpus Callosum Left Hemisphere Neural Model Hemispheric Asymmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anninos P, et al. A Computer Model for Learning Processes and the Role of the Cerebral Commissures, Biol. Cybern, 50, 1984, 329–336.zbMATHCrossRefGoogle Scholar
  2. 2.
    Anninos P & Cook N. Neural Net Simulation of the Corpus Callosum, Intl. J. Neurosci., 38, 1988, 381–391.Google Scholar
  3. 3.
    Bates E, Thal D & Janowsky J. Early Language Development and Its Neural Correlates, in S. Segalowitz & I. Rabin (eds.), Handbook of Neuropsychology, 7, 1992, 69–110.Google Scholar
  4. 4.
    Belin P, Van Eeckhout P, Zilbovicius M, et al. Recovery From Nonfluent Aphasia After Melodic Intonation Therapy: A PET Study, Neurol., 47, 1996, 1504–1511.Google Scholar
  5. 5.
    Berlucchi G. Two Hemispheres But One Brain, Behav Brain Sci, 6, 1983, 171–3.Google Scholar
  6. 6.
    Bowler J, Wade J, Jones B, et al. Contribution of Diaschisis to the Clinical Deficit in Human Cerebral Infarction, Stroke, 26, 1995, 1000–1006.Google Scholar
  7. 7.
    Burgess C & Lund K. Modeling Cerebral Asymmetries in High-Dimensional Semantic Space, in Right Hemisphere Language Comprehension, M. Beeman & C. Chiarello (eds.), Erlbaum, 1998, 215–244.Google Scholar
  8. 8.
    Cappa S, Perani D, Grassi F, et al. A PET Follow-UP Study of Recovery After Stroke in Acute Aphasics, Brain and Language, 56, 1997, 55–67.CrossRefGoogle Scholar
  9. 9.
    Caselli R. Bilateral Impairment of Somesthetically Mediated Object Recognition in Humans, Mayo Clin. Proc., 66, 1991, 357–364.Google Scholar
  10. 10.
    Cook N. The Brain Code, Methuen, 1986.Google Scholar
  11. 11.
    Cook N & Beech A. The Cerebral Hemispheres and Bilateral Neural Nets, Int. J. Neurosci., 52, 1990, 201–210.CrossRefGoogle Scholar
  12. 12.
    Davidson R & Hugdahl K (eds.), Brain Asymmetry, MIT Press, 1995.Google Scholar
  13. 13.
    Denenberg V. Micro and Macro Theories of the Brain, Behav. Brain Sci., 6, 1983, 174–178.CrossRefGoogle Scholar
  14. 14.
    Dennis M. & Whitaker H. Language Acquisition Following Hemidecortication. Linguistic Superiority of Left Over Right Hemisphere, Brain and Language, 3, 1976, 404–433.Google Scholar
  15. 15.
    Feeney D & Baron J. Diaschisis, Stroke, 17, 1986, 817–830.Google Scholar
  16. 16.
    Ferbert A, et al. Interhemispheric Inhibition of the Human Motor Cortex, J. Physiol., 453, 1992, 525–546.Google Scholar
  17. 17.
    Fink G, Driver J, Rorden C, et al. Neural Consequences of Competing Stimuli in Both Visual Hemifields, Annals of Neurology, 47, 2000, 440–446.CrossRefGoogle Scholar
  18. 18.
    Geschwind N & Galaburda A. Cerebral Lateralization, MIT Press, 1987.Google Scholar
  19. 19.
    Goodall S, Reggia J, et al. A Computational Model of Acute Focal Cortical Lesions, Stroke, 28, 1997, 101–109.Google Scholar
  20. 20.
    Heiss W, Karbe H, et al. Speech-Induced Cerebral Metabolic Activation Reflects Recovery From Aphasia, J. Neurol. Sci., 145, 1997, 213–217.CrossRefGoogle Scholar
  21. 21.
    Heiss W, Kessler J, Thiel A et al. Differential Capacity of Left and Right Hemispheric Areas for Compensation of Poststroke Aphasia, Annals of Neurology, 45, 1999, 430–438.CrossRefGoogle Scholar
  22. 22.
    Hellige J. Hemispheric Asymmetry, Harvard, 1993.Google Scholar
  23. 23.
    Innocenti G. General Organization of Callosal Connections in the Cerebral Cortex, Cerebral Cortex, 5, E. Jones & A. Peters (eds) Plenum, 1986, 291–353.Google Scholar
  24. 24.
    Ivry R & Robertson L. The Two Sides of Perception, MIT Press, 1998, 225–255.Google Scholar
  25. 25.
    Jacobs R & Kosslyn S. Encoding Shape and Spatial Relations, Cognitive Science, 18, 1994, 361–386.CrossRefGoogle Scholar
  26. 26.
    Kinsbourne M. The Minor Cerebral Hemisphere as a Source of Aphasic Speech, Arch. Neurol., 25, 1971, 302–306.Google Scholar
  27. 27.
    Kinsbourne M. (ed.) Asymmetrical Function of the Brain, Cambridge, 1978.Google Scholar
  28. 28.
    Knopman D, Rubens A, Selnes O, Klassen A, & Meyer M. Mechanisms of Recovery from Aphasia, Annals of Neurology, 15, 1984, 530–535.CrossRefGoogle Scholar
  29. 29.
    Kosslyn S, Chabris C, et al. Categorical Versus Coordinate Spatial Relations: Computational Analyses and Computer Simulations, J. Exper. Psych: Human Perception and Performance, 18, 1992, 562–577.CrossRefGoogle Scholar
  30. 30.
    Lee H, Nakada T, Deal J, et al. Transfer of Language Dominance, Annals of Neurology, 15, 1984, 304–307.CrossRefGoogle Scholar
  31. 31.
    Levitan S & Reggia J. A Computational Model of Lateralization and Asymmetries in Cortical Maps, Neural Computation, 12, 2000, 2037–2062.CrossRefGoogle Scholar
  32. 32.
    Levitan S & Reggia J. Interhemispheric Effects on Map Organization Following Simulated Cortical Lesions, Artificial Intelligence in Medicine, 17, 1999, 59–85.CrossRefGoogle Scholar
  33. 33.
    Meyer B. et al. Inhibitory and Excitatory Interhemispheric Transfers Between Motor Cortical Areas in Normal Humans and Patients with Abnormalities of Corpus Callosum, Brain, 118, 1995, 429.CrossRefGoogle Scholar
  34. 34.
    Meyer J, et al. Diaschisis, Neurol. Res., 15, 1993, 362–366.Google Scholar
  35. 35.
    Monoghan P & Shillcock R. The Cross-Over Effect in Unilateral Neglect, Brain, 121, 1998, 907–921.CrossRefGoogle Scholar
  36. 36.
    Netz J, Ziemann U & Homberg V. Hemispheric Asymmetry of Transcallosal Inhibition in Man, Experimental Brain Research, 104, 1995, 527–533.CrossRefGoogle Scholar
  37. 37.
    Ohyama M, Senda M, Kitamura S, et al. Role of the Nondominant Hemisphere During Word Repetition in Poststroke Aphasics, Stroke, 27, 1996, 897–903.Google Scholar
  38. 38.
    Pandya D. & Seltzer B. The Topography of Commissural Fibers, in Two Hemispheres-One Brain, F. Lepore et al (eds.), Alan Liss, 1986, 47–73.Google Scholar
  39. 39.
    Papanicolaou A, Moore B, Deutsch G, et al. Evidence for Right-Hemisphere Involvement in Aphasia Recovery, Arch. Neurol., 45, 1988, 1025–1029.Google Scholar
  40. 40.
    Pouget A. & Sejnowski T. Lesion in a Brain Function Model of Parietal Cortex, Parietal Lobe Contribution in Orientation in 3D Space, Thier, P. & Karnath, H. (eds.), 1997, 521–538.Google Scholar
  41. 41.
    Reggia J, Ruppin E, and Berndt R (eds.). Neural Modeling of Brain and Cognitive Disorders, World Scientific, 1996.Google Scholar
  42. 42.
    Reggia J, Goodall S, & Shkuro Y. Computational Studies of Lateralization of Phoneme Sequence Generation, Neural Computation, 10 1998, 1277–1297.CrossRefGoogle Scholar
  43. 43.
    Reggia J, Gittens S. & Chhabra J. Post-Lesion Lateralization Shifts in a Computational Model of Single-Wood Reading, Laterality, 5, 2000, 133–154.CrossRefGoogle Scholar
  44. 44.
    Reggia J, Goodall S, Shkuro Y & Glezer M. The Callosal Dilemma: Explaining Diaschisis in the Context of Hemispheric Rivalry, 2000, submitted.Google Scholar
  45. 45.
    Ringo J, Doty R, Demeter S & Simard P. Time Is of the Essence: A Conjecture that Hemispheric Specialization Arises from Interhemispheric Conduction Delay, Cerebral Cortex, 4, 1994, 331–343.CrossRefGoogle Scholar
  46. 46.
    Rizzo M. & Robin D. Bilateral Effects of Unilateral Visual Cortex Lesions in Humans, Brain, 1996, 119, 951–963.CrossRefGoogle Scholar
  47. 47.
    Selnes O. Recovery from Aphasia: Activating the “Right” Hemisphere, Annals of Neurology, 45, 1999, 419–420.CrossRefGoogle Scholar
  48. 48.
    Shevtsova N & Reggia J. A Neural Network Model of Lateralization During Letter Identification, J. Cognitive Neurosci., 11, 1999, 167–181.CrossRefGoogle Scholar
  49. 49.
    Shevtsova N & Reggia J. Interhemispheric Effects of Simulated Lesions in a Neural Model of Letter Identification, Brain and Cognition, 2000, in press.Google Scholar
  50. 50.
    Shkuro Y, Glezer M & Reggia J. Interhemispheric Effects of Lesions in a Neural Model of Single-Word Reading, Brain and Language, 72, 2000, 343–374.CrossRefGoogle Scholar
  51. 51.
    Silvestrini M, Troisi E, Matteis M, Cupini L & Caltagirone C. Involvement of the Healthy Hemisphere in Recovery From Aphasia and Motor Deficits in Patients with Cortical Ischemic Infarction, Neurology, 45, 1995, 1815–1820.Google Scholar
  52. 52.
    Sober S, Stark D, Yamasaki D & Lytton W. Receptive Field Changes After Stroke-like Cortical Ablation, J. Neurophys., 78, 1997, 3438–3443.Google Scholar
  53. 53.
    Thulborn K, et al. Plasticity of Language-Related Brain Function During Recovery from Stroke, Stroke, 30, 1999, 749–754.Google Scholar
  54. 54.
    Toyama et al. Synaptic Action of Commissural Impulses upon Association Efferent Cells in Cat Visual Cortex, Brain Res., 14, 1969, 518–520.CrossRefGoogle Scholar
  55. 55.
    Weiller C, et al. Recovery from Wernicke’s Aphasia: A PET Study, Annals of Neurology, 37, 1995, 723–732.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • James A. Reggia
    • 1
    • 2
  • Yuri Shkuro
    • 1
  • Natalia Shevtsova
    • 3
  1. 1.Dept. of Computer ScienceUniversity of MarylandUSA
  2. 2.UMIACS and Department of NeurologyUSA
  3. 3.A. B. Kogan Research Institute for NeurocyberneticsRostov State UniversityRussia

Personalised recommendations