The Role of Brain Chaos

  • Péter Andr#x00E1s
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2036)

Abstract

A new interpretation of the brain chaos is proposed in this paper. The fundamental ideas are grounded in approximation theory. We show how the chaotic brain activity can lead to the emergence of highly precise behavior. To provide a simple example we use the Sierpinski triangles and we introduce the Sierpinski brain. We analyze the learning processes of brains working with chaotic neural objects. We discuss the general implications of the presented work, with special emphasis on messages for AI research.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andras, P.: RBF neural networks with orthogonal basis functions. To appear in: Howlett, R.J., Jain, L.C. (eds.): Recent Developments in Theory and Algorithms for Radial Basis Function Networks. Physica-Verlag, Heidelberg (2000)Google Scholar
  2. 2.
    Brockmann, D., Geisel, T.: The ecology of gaze shifts. Neurocomputing 32-33 (2000) 643–650Google Scholar
  3. 3.
    Devaney, R.L.: A First Course in Chaotic Dynamical Systems. Theory and Experiment. Addison-Wesley, Reading, MA (1992).Google Scholar
  4. 4.
    Edelman, G.M.: Neural Darwinism.Basic Books, New York, NY (1987)Google Scholar
  5. 5.
    Ellacott, S.W.: Aspects of numerical analysis of neural networks. Acta Numerica 3 (1994) 145–202MathSciNetCrossRefGoogle Scholar
  6. 6.
    Erdi, P.: On the ‘Dynamic Brain’ metaphor. Brain and Mind 1 (2000) 119–145CrossRefGoogle Scholar
  7. 7.
    Freeman, W.J.: Role of chaotic dynamics in neural plasticity. In: Pelt, J. van,Corner, M.A., Uylings, H.B.M., Lopes da Silva, F.H. (eds.): Progress in Brain Research 102 (1994) 319–333Google Scholar
  8. 8.
    Fujii, H., Ito, H., Aihara, K., Ichinose, N., Tsukada, M.: Dynamical Cell Assembly Hypothesis Theoretical Possibility of Spatio-temporal Coding in the Cortex. Neural Networks 9 (1996) 1303–1350MATHCrossRefGoogle Scholar
  9. 9.
    Glass, L.: Chaos in neural systems. In: Arbib, M.A. (ed.): The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, MA, (1995) 186–189Google Scholar
  10. 10.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan Publishers, Englewood Cliffs, NJ, (1994)MATHGoogle Scholar
  11. 11.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences 79 (1982) 2554–2558CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hooper, S.L.: Crustacean stomatogastric system. In: Arbib, M.A. (ed.): The Hand-book of Brain Theory and Neural Networks. MIT Press, Cambridge, MA, (1995) 275–278Google Scholar
  13. 13.
    Kelso, J.A.S.: Dynamic Patterns: The Self-Organization of Brain and Behavior. Bradford Books, Cambridge, MA (1997)Google Scholar
  14. 14.
    Lieske, S.P., Thoby-Brisson, M., Telgkamp, P., Ramirez, J.M.: Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps. Nature Neuroscience 3 (2000) 600–607CrossRefGoogle Scholar
  15. 15.
    Lind, D.A., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)MATHGoogle Scholar
  16. 16.
    Masson, G.S., Castet, E.: Motion perception during saccadic eye movements. Nature Neuroscience 3 (2000) 177–183CrossRefGoogle Scholar
  17. 17.
    Mpitsos, G.J., Burton, R.M., Creech, H.C., Soinilla, S.O.: Evidence for chaos in spike trains of neurons that generate rhythmic motor patterns, Brain Research Bulletin 21 (1988) 529–538CrossRefGoogle Scholar
  18. 18.
    Nara, S., Davis, P.: Learning feature constraints in a chaotic neural memory. Physical Review E 55 (1997) 826–830CrossRefGoogle Scholar
  19. 19.
    Van Ooyen, A., Willshaw, D.J.: Development of nerve connections under the control of neurotrophic factors: parallels with consumer-resource systems in population biology. Journal of Theoretical Biology 206 (2000) 195–210CrossRefGoogle Scholar
  20. 20.
    Rabinovich, M.I., Abarbanel, H.D.I., Huerta, R., Elson, R., Selverston, Al.I.: Self-regularization of chaos in neural systems: Experimental and theoretical results. IEEE Transactions on Circuits and Systems-I.: Fundamental Theory and Applications 44 (1997) 997–1005CrossRefMathSciNetGoogle Scholar
  21. 21.
    Rakic, P., Komuro, H.: The role of receptor-channel activity during neuronal cell migration. Journal of Neurobiology 26 (1995 ) 299–315CrossRefGoogle Scholar
  22. 22.
    Schiff, S.J.: Forecasting brain storms. Nature Medicine 4 (1998) 1117–1118CrossRefGoogle Scholar
  23. 23.
    Schölkpof, B., Burges, C.J.C., Smola, A.J. (eds.): Advances in Kernel Methods. Support Vector Learning. MIT Press, Cambridge, MA, (1999)Google Scholar
  24. 24.
    Shepherd, G.M.: The Synaptic Organization of the Brain. Oxford University Press, Oxford (1997)Google Scholar
  25. 25.
    Tsuda, I.: Towards an interpretation of dynamic neural activity in terms of chaotic dynamical systems. To appear in: Behavioral and Brain Sciences (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Péter Andr#x00E1s
    • 1
  1. 1.Department of PsychologyUniversity of Newcastle upon TyneNewcastle upon TyneUK

Personalised recommendations