Automatic Identification of Diatoms Using Decision Forests

  • Stefan Fischer
  • Horst Bunke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2123)

Abstract

A feature based identification scheme for microscopic images of diatoms is presented in this paper. Diatoms are unicellular algae found in water and other places wherever there is humidity and enough light for photo synthesis. The proposed automatic identification scheme follows a decision tree based classification approach. In this paper two different ensemble learning methods are evaluated and results are compared with those of single decision trees. As test sets two different diatom image databases are used. For each image in the databases general features like symmetry, geometric properties, moment invariants, and Fourier descriptors as well as diatom specific features like striae density and direction are computed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Automatic Diatom Identification And Classification. Project home page: http://www.ualg.pt/adiac/.
  2. 2.
    L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.MATHMathSciNetGoogle Scholar
  3. 3.
    T. G. Dietterich. Ensemble methods in machine learning.In J. Kittler and F. Roli, editors, First International Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science, pages 1–15. Springer Verlag, New York, 2000.CrossRefGoogle Scholar
  4. 4.
    S. Fischer, M. Binkert, and H. Bunke. Feature based retrieval of diatoms in an image database using decision trees. In ACIVS 2000, pages 67–72, Baden-Baden, Germany, August 2000.Google Scholar
  5. 5.
    S. Fischer, M. Binkert, and H. Bunke. Feature based retrieval of diatoms in an image database using decision trees. Technical Report IAM-00-001, Institute of Computer Science and Applied Mathematics, University of Bern, Switzerland, 2000.Google Scholar
  6. 6.
    S. Fischer, M. Binkert, and H. Bunke. Symmetry based indexing of diatoms in an image database.In Proceedings of the ICPR 2000, volume 2, pages 899–902, Barcelona, Spain, September 2000.Google Scholar
  7. 7.
    J. Flusser and T. Suk. Pattern recognition by affine moment invariants. Pattern Recognition, 26(1):167–174, 1993.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Machine Learning: Proceedings of the Thirteenth International Conference, pages 148–156, Bari, Italy, 1996. Morgan Kaufmann.Google Scholar
  9. 9.
    T. K. Ho. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844, August 1998.Google Scholar
  10. 10.
    M. Hu. Visual pattern recognition by moment invariants. IEEE Trans. Information Theory, 8(2):179–187, February 1962.Google Scholar
  11. 11.
    K. Krammer and H. Lange-Bertalot. Bacillariophyceae. In H. Ettl, J. Gerloff, H. Heynig, and D. Mollenhauer, editors, Süsswasserflora von Mitteleuropa (in German). Gustav Fischer Verlag, Stuttgart, 1986.Google Scholar
  12. 12.
    D. G. Mann, and S. J. M. Droop. Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336:19–32, 1996.Google Scholar
  13. 13.
    D. Mou, and E. F. Stoermer. Separating Tabellaria (Bacillariophyceae) shape groups: A large sample approach based on Fourier descriptor analysis. Journal of Phycology, 28:386–395, 1992.CrossRefGoogle Scholar
  14. 14.
    B. Parmanto, P. W. Munro, and H. R. Doyle. Reducing variance of committee prediction with resampling techniques. Connection Science, 8(3&4):405–425, 1996.CrossRefGoogle Scholar
  15. 15.
    J. R. Quinlan. Bagging, boosting, and C4.5. In Proceedings of the Thirteenth National Conference on Artificial Intelligence, pages 725–730, Cambridge, MA, 1996. AAAI Press/MIT Press.Google Scholar
  16. 16.
    R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, USA, 1993.Google Scholar
  17. 17.
    P. L. Rosin. Measuring shape: Ellipticity, rectangularity, and triangularity. In Proceedings of the ICPR 2000, volume 2, pages 952–955, Barcelona, Spain, September 2000.Google Scholar
  18. 18.
    M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Machine Vision. Brooks/Cole, 2. edition, 1999.Google Scholar
  19. 19.
    E. F. Stoermer, and T. B. Ladewski. Quantitative analysis of shape variations in type and modern populations of Gomphoneis herculeana. Nova Hedwigia Beihefte, 73:347–373, 1982.Google Scholar
  20. 20.
    E. F. Stoermer and J. P. Smol, editors. The Diatoms: Applications for the Environmental and Earth Science. Cambridge University Press, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Stefan Fischer
    • 1
  • Horst Bunke
    • 1
  1. 1.Institute of Computer Science and Applied MathematicsUniversity of BernSwitzerland

Personalised recommendations