Advertisement

Pattern Structures and Their Projections

  • Bernhard Ganter
  • Sergei O. Kuznetsov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2120)

Abstract

Pattern structures consist of objects with descriptions (called patterns) that allow a semilattice operation on them. Pattern structures arise naturally from ordered data, e.g., from labeled graphs ordered by graph morphisms. It is shown that pattern structures can be reduced to formal contexts, however sometimes processing the former is often more efficient and obvious than processing the latter. Concepts, implications, plausible hypotheses, and classifications are defined for data given by pattern structures. Since computation in pattern structures may be intractable, approximations of patterns by means of projections are introduced. It is shown how concepts, implications, hypotheses, and classifications in projected pattern structures are related to those in original ones.

Keywords

Pattern Structure Complete Lattice Conceptual Structure Molecular Graph Concept Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.-G. Bartel, Matematische Methoden in der Chemie, Spektrum, Heidelberg, 1996.Google Scholar
  2. 2.
    F. Baader and R. Molitor, Building and Structuring Description Logic Knowledge Spaces Using Least Common Subsumers and Concept Analysis, in Proc. 8th Int. Conf. on Conceptual Structures, ICCS’2000, G. Mineau and B. Ganter, Eds., Lecture Notes in Artificial Intelligence, 1867, 2000, pp. 292–305.Google Scholar
  3. 3.
    G. Birkhoff: Lattice Theory. AMS Colloquium Publications XXV, Providence, Rhode Island, 3rd edition 1967.zbMATHGoogle Scholar
  4. 4.
    L. Chaudron and N. Maille, Generalized Formal Concept Analysis, in Proc. 8th Int. Conf. on Conceptual Structures, ICCS’2000, G. Mineau and B. Ganter, Eds., Lecture Notes in Artificial Intelligence, 1867, 2000, pp. 357–370.Google Scholar
  5. 5.
    B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press, 1990.Google Scholar
  6. 6.
    M. Erné, Einführung in die Ordnungstheorie, Mannheim, B.I.-Wissenschaftsverlag, 1982.zbMATHGoogle Scholar
  7. 7.
    S. Férré and O. Ridoux, A Logical Generalization of Formal Concept Analysis, in Proc. 8th Int. Conf. on Conceptual Structures, ICCS’2000, G. Mineau and B. Ganter, Eds., Lecture Notes in Artificial Intelligence, 1867, 2000.Google Scholar
  8. 8.
    V. K. Finn, Plausible Reasoning in Systems of JSM Type, Itogi Nauki i Tekhniki, Seriya Informatika, 15, 54–101, 1991 [in Russian].Google Scholar
  9. 9.
    B. Ganter and K. Reuter, Finding all closed sets: a general approach, Order, 8, 283–290, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    B. Ganter and S. O. Kuznetsov, Stepwise Construction of the Dedekind-MacNeille Completion, Proc. 6th Int. Conf. on Conceptual Structures, ICCS’98, M-L. Mugnier, M. Chein, Eds., Lecture Notes in Artificial Intelligence, 1453, 1998, pp. 295–302.Google Scholar
  11. 11.
    B. Ganter and S. O. Kuznetsov, Formalizing Hypotheses with Concepts, Proc. 8th Int. Conf. on Conceptual Structures, ICCS’2000, G. Mineau and B. Ganter, Eds., Lecture Notes in Artificial Intelligence, 1867, 2000, pp. 342–356.Google Scholar
  12. 12.
    B. Ganter and R. Wille, Formal Concept Analysis. Mathematical Foundations, Berlin, Springer, 1999.Google Scholar
  13. 13.
    M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, New York, Freeman, 1979.zbMATHGoogle Scholar
  14. 14.
    R. Gugisch, Lattice Contexts: A Generalization in Formal Concept Analysis, unpublished manuscript, 2000.Google Scholar
  15. 15.
    S. O. Kuznetsov, JSM-method as a Machine Learning System, Itogi Nauki Tekhn., ser. Informatika, no. 15, 17–54, 1991 [in Russian].Google Scholar
  16. 16.
    S.O. Kuznetsov, Learning of Simple Conceptual Graphs from Positive and Negative Examples, in Proc. Principles of Data Mining and Knowledge Discovery, Third European Conference, PKDD’99, J. Zytkow, J. Rauch, Eds., Lecture Notes in Artificial Intelligence, 1704, 1999, pp. 384–392.Google Scholar
  17. 17.
    M. Liquiere and J. Sallantin, Structural Machine Learning with Galois Lattice and Graphs, Proc. Int. Conf. Machine Learning ICML’98, 1998.Google Scholar
  18. 18.
    M.-L. Mugnier and M. Chein, Représenter des connaissances et raisonner avec des graphes, Revue d’Intelligence Artificielle, 10(1), 1996, pp. 7–56.zbMATHGoogle Scholar
  19. 19.
    M.-L. Mugnier, Knowledge Representation and Reasonings Based on Graph Homomorphisms, in Proc. 8th Int. Conf. on Conceptual Structures, ICCS’2000, G. Mineau and B. Ganter, Eds., Lecture Notes in Artificial Intelligence, 1867, 2000, pp. 172–192.Google Scholar
  20. 20.
    S. Prediger, Simple Concept Graphs: A Logic Approach, in Proc. 6th Int. Conf. on Conceptual Structures, ICCS’98, M.-L. Mugnier, M. Chein, Eds., Lecture Notes in Artificial Intelligence, 1453, 1998, pp. 225–239.Google Scholar
  21. 21.
    J. F. Sowa, Conceptual Structures-Information Processing in Mind and Machine, Reading, M.A.: Addison-Wesley, 1984.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Bernhard Ganter
    • 1
  • Sergei O. Kuznetsov
    • 2
  1. 1.Institut für AlgebraTU DresdenDresdenGermany
  2. 2.All-Russia Institute for Scientific and Technical Information (VINITI)MoscowRussia

Personalised recommendations