Superfluidity in Neutron Star Matter

  • Umberto Lombardo
  • Hans-Josef Schulze
Part of the Lecture Notes in Physics book series (LNP, volume 578)


The research on the superfluidity of neutron matter can be traced back to Migdal’s observation that neutron stars are good candidates for being macroscopic superfluid systems [1]. And, in fact, during more than two decades of neutron-star physics the presence of neutron and proton superfluid phases has been invoked to explain the dynamical and thermal evolution of a neutron star. The most striking evidence is given by post-glitch timing observations [2],[3], but also the cooling history is strongly influenced by the possible presence of super- fluid phases [4],[5]. On the theoretical side, the onset of superfluidity in neutron matter or in the more general context of nuclear matter was investigated soon after the formulation of the Bardeen, Cooper, and Schrieffer (BCS) theory of superconductivity [6] and the pairing theory in atomic nuclei [7],[8].


Fermi Surface Nuclear Matter Neutron Matter Symmetric Nuclear Matter Interaction Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. B. Migdal, Soviet Physics JETP 10, 176 (1960).MathSciNetGoogle Scholar
  2. 2.
    J. A. Sauls, in Timing Neutron Stars, ed. by H. Ögelman and E. P. J. van den Heuvel, (Dordrecht, Kluwer, 1989) pp. 457.Google Scholar
  3. 4.
    S. Tsuruta, Phys. Rep. 292, 1 (1998).CrossRefADSGoogle Scholar
  4. 5.
    H. Heiselberg and M. Hjorth-Jensen, Phys. Rep. 328, 237 (2000).CrossRefADSGoogle Scholar
  5. 6.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 7.
    A. Bohr, B. Mottelson, and D. Pines, Phys. Rev. 110, 936 (1958).CrossRefADSGoogle Scholar
  7. 8.
    A. Bohr, B. Mottelson, Nuclear Structure, Vol. 2 (Benjamin, New York, 1974).Google Scholar
  8. 9.
    L. N. Cooper, R. L. Mills, and A. M. Sessler, Phys. Rev. 114, 1377 (1959).CrossRefADSMathSciNetGoogle Scholar
  9. 10.
    V. J. Emery and A. M. Sessler, Phys. Rev. 119, 248 (1960).zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 11.
    R. Tamagaki, Prog. Theor. Phys. 44, 905 (1970).CrossRefADSGoogle Scholar
  11. 12.
    T. Takatsuka and R. Tamagaki, Prog. Theor. Phys. Suppl. 112, 27 (1993).ADSCrossRefGoogle Scholar
  12. 13.
    J. M. C. Chen, J. W. Clark, R. D. Davé, and V. V. Khodel, Nucl. Phys. A555, 59 (1993).ADSGoogle Scholar
  13. 14.
    U. Lombardo, ‘Superfluidity in Nuclear Matter’, in Nuclear Methods and Nuclear Equation of State, ed. by M. Baldo, (World Scientific, Singapore, 1999) pp. 458–510.Google Scholar
  14. 15.
    A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliffs, 1963).Google Scholar
  15. 16.
    P. Nozières, Le problème à N corps (Dunod, Paris, 1963).zbMATHGoogle Scholar
  16. 17.
    P. Nozières, Theory of Interacting Fermi Systems (Benjamin, New York, 1966).Google Scholar
  17. 18.
    J. R. Schrieffer, Theory of Superconductivity (Addison-Wesley, New York, 1964).zbMATHGoogle Scholar
  18. 19.
    A. B. Migdal, Theory of Finite Systems and Applications to Atomic Nuclei (Benjamin, New York, 1964).Google Scholar
  19. 20.
    P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980).Google Scholar
  20. 21.
    M. Baldo, I. Bombaci, and U. Lombardo, Phys. Lett. B283, 8 (1992).ADSGoogle Scholar
  21. 22.
    M. Baldo, U. Lombardo, and P. Schuck, Phys. Rev. C52, 975 (1995).ADSGoogle Scholar
  22. 23.
    M. Lacombe, B. Loiseaux, J. M. Richard, R. Vinh Mau, J. Côté, D. Pirès, and R. de Tourreil, Phys. Rev. C21, 861 (1980).ADSGoogle Scholar
  23. 24.
    R. B. Wiringa, R. A. Smith, and T. L. Ainsworth, Phys. Rev. C29, 1207 (1984).ADSGoogle Scholar
  24. 25.
    R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).Google Scholar
  25. 26.
    V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J. J. de Swart, Phys. Rev. C48, 792 (1993).ADSGoogle Scholar
  26. 27.
    R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C51, 38 (1995).ADSGoogle Scholar
  27. 28.
    R. Machleidt, F. Sammarruca, and Y. Song, Phys. Rev. C53, 1483 (1996).ADSGoogle Scholar
  28. 29.
    L. Amundsen and E. Østgaard, Nucl. Phys. A442, 163 (1985).ADSGoogle Scholar
  29. 30.
    M. Baldo, J. Cugnon, A. Lejeune, and U. Lombardo, Nucl. Phys. A536, 349 (1992).ADSGoogle Scholar
  30. 31.
    Ø. Elgarøy, L. Engvik, M. Hjorth-Jensen, and E. Osnes, Nucl. Phys. A607, 425 (1996).ADSGoogle Scholar
  31. 32.
    M. Baldo, Ø. Elgarøy, L. Engvik, M. Hjorth-Jensen, and H.-J. Schulze, Phys. Rev. C58, 1921 (1998).ADSGoogle Scholar
  32. 33.
    V. A. Khodel, V. V. Khodel, and J. W. Clark, Phys. Rev. Lett. 81, 3828 (1998).CrossRefADSGoogle Scholar
  33. 34.
    A. L. Goodman, Nucl. Phys. A186, 475 (1972); Phys. Rev. C60, 014331 (1999).ADSGoogle Scholar
  34. 35.
    L. Amundsen and E. Østgaard, Nucl. Phys. A437, 487 (1985).ADSGoogle Scholar
  35. 52.
    U. Lombardo and H.-J. SchulzeGoogle Scholar
  36. 36.
    M. Baldo, J. Cugnon, A. Lejeune, and U. Lombardo, Nucl. Phys. A515, 409 (1990).ADSGoogle Scholar
  37. 37.
    V. A. Khodel, V. V. Khodel, and J. W. Clark, Nucl. Phys. A598, 390 (1996).ADSGoogle Scholar
  38. 38.
    Ø. Elgarøy and M. Hjorth-Jensen, Phys. Rev. C57, 1174 (1998).ADSGoogle Scholar
  39. 39.
    T. Alm, G. Röpke, and M. Schmidt, Z. Phys. A337, 355 (1990).ADSGoogle Scholar
  40. 40.
    B. E. Vonderfecht, C. C. Gearhart, W. H. Dickho., A. Polls, and A. Ramos, Phys. Lett. B253, 1 (1991).ADSGoogle Scholar
  41. 41.
    T. Alm, B. L. Friman, G. Röpke, and H. Schulz, Nucl. Phys. A551, 45 (1993).ADSGoogle Scholar
  42. 42.
    H. Stein, A. Schnell, T. Alm, and G. Röpke, Z. Phys. A351, 295 (1995).ADSGoogle Scholar
  43. 43.
    T. Alm, G. Röpke, A. Sedrakian, and F. Weber, Nucl. Phys. A406, 491 (1996).ADSGoogle Scholar
  44. 44.
    M. Baldo, U. Lombardo, P. Schuck, and A. Sedrakian, Condensed Matter Theories, Vol. 12, ed. by J. W. Clark (Nova Science Publishers, 1997), pp. 265–277.Google Scholar
  45. 45.
    Ø. Elgarøy, L. Engvik, E. Osnes, and M. Hjorth-Jensen, Phys. Rev. C57, R1069 (1998).ADSGoogle Scholar
  46. 46.
    U. Lombardo, H.-J. Schulze, and W. Zuo, Phys. Rev. C59, 2927 (1999).ADSGoogle Scholar
  47. 47.
    A. Sedrakian, G. Röpke, and T. Alm, Nucl. Phys. A594, 355 (1995).ADSGoogle Scholar
  48. 48.
    A. Sedrakian, T. Alm, and U. Lombardo, Phys. Rev. C55, R582 (1997).ADSGoogle Scholar
  49. 49.
    G. Röpke, A. Schnell, P. Schuck, and U. Lombardo, Phys. Rev. C61, 024306 (2000).ADSGoogle Scholar
  50. 50.
    A. Sedrakian and U. Lombardo, Phys. Rev. Lett. 84, 602 (2000).CrossRefADSGoogle Scholar
  51. 51.
    J. Cugnon, P. Deneye, and A. Lejeune, Z. Phys. A326, 409 (1987).ADSGoogle Scholar
  52. 52.
    I. Bombaci and U. Lombardo, Phys. Rev. C44, 1892 (1991).ADSGoogle Scholar
  53. 53.
    W. Zuo, I. Bombaci, and U. Lombardo, Phys. Rev. C60, 024605 (1999).ADSGoogle Scholar
  54. 54.
    Ø. Elgarøy, L. Engvik, M. Hjorth-Jensen, and E. Osnes, Nucl. Phys. A604, 466 (1996).ADSGoogle Scholar
  55. 55.
    M. Baldo, G. F. Burgio, and H.-J. Schulze, Phys. Rev. C58, 3688 (1998); C61, 055801 (2000).ADSGoogle Scholar
  56. 56.
    I. Vidaña, A. Polls, A. Ramos, L. Engvik, and M. Hjorth-Jensen, Phys. Rev. C62, 035801 (2000).ADSGoogle Scholar
  57. 57.
    P. W. Anderson and P. Morel, Phys. Rev. 123, 1911 (1961).CrossRefADSMathSciNetGoogle Scholar
  58. 58.
    A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New-York, 1971).Google Scholar
  59. 59.
    L. P. Gorkov and T. K. Melik-Barkhudarov, Sov. Phys. JETP 13, 1018 (1961).Google Scholar
  60. 60.
    T. Papenbrock and G. F. Bertsch, Phys. Rev. C59, 2052 (1999).ADSGoogle Scholar
  61. 61.
    H. Heiselberg, C. J. Pethick, H. Smith, and L. Viverit, Phys. Rev. Lett. 85, 2418 (2000).CrossRefADSGoogle Scholar
  62. 62.
    J. W. Clark, C.-G. Källman, C.-H. Yang, and D. A. Chakkalakal, Phys. Lett. B61, 331 (1976).ADSGoogle Scholar
  63. 63.
    J. M. C. Chen, J. W. Clark, E. Krotschek, and R. A. Smith, Nucl. Phys. A451, 509 (1986).ADSGoogle Scholar
  64. 64.
    T. L. Ainsworth, J. Wambach, and D. Pines, Phys. Lett. B222, 173 (1989).ADSGoogle Scholar
  65. 65.
    J. Wambach, T. L. Ainsworth, and D. Pines, Nucl. Phys. A555, 128 (1993).ADSGoogle Scholar
  66. 66.
    H.-J. Schulze, J. Cugnon, A. Lejeune, M. Baldo, and U. Lombardo, Phys. Lett. B375, 1 (1996).ADSGoogle Scholar
  67. 67.
    S. Babu and G. E. Brown, Ann. Phys. (N.Y.) 78, 1 (1973).CrossRefADSGoogle Scholar
  68. 68.
    O. Sjöberg, Ann. Phys. (N.Y.) 78, 39 (1973).CrossRefADSGoogle Scholar
  69. 69.
    S.-O. Bäckmann, C.-G. Källman, and O. Sjöberg, Phys. Lett. 43B, 263 (1973).ADSGoogle Scholar
  70. 70.
    A. D. Jackson, E. Krotschek, D. E. Meltzer, and R. A. Smith, Nucl. Phys. A386, 125 (1982).ADSGoogle Scholar
  71. 71.
    W. H. Dickho., A. Faessler, H. Müther, and Shi-Shu Wu, Nucl. Phys. A405, 534 (1983).ADSGoogle Scholar
  72. 72.
    S.-O. Bäckmann, G. E. Brown, and J. A. Niskanen, Phys. Rep. 124, 1 (1985).CrossRefADSGoogle Scholar
  73. 73.
    P. Bozek, Nucl. Phys. A657, 187 (1999); Phys. Rev. C62, 054316 (2000).ADSGoogle Scholar
  74. 74.
    M. Baldo and A. Grasso, Phys. Lett. B485, 115 (2000).ADSGoogle Scholar
  75. 75.
    J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rep. 25C, 83 (1976).CrossRefADSGoogle Scholar
  76. 76.
    Zuo Wei, G. Giansiracusa, U. Lombardo, N. Sandulescu, and H.-J. Schulze, Phys. Lett. B421, 1 (1998).ADSGoogle Scholar
  77. 77.
    U. Lombardo and P. Schuck, ‘Self-energy effects in neutron matter superfluidity’, to be published.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Umberto Lombardo
    • 1
  • Hans-Josef Schulze
    • 2
  1. 1.Dipartimento di FisicaUniversità di CataniaCataniaItaly
  2. 2.Departament d’Estructura i Constituents de la MatèriaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations