Advertisement

Informatics pp 341-355 | Cite as

Computational Biology at the Beginning of the Post-genomic Era

  • Thomas Lengauer
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2000)

Abstract

The year 2000 will be remembered in history as the year in which the human genome has been sequenced. This marks the end of the pre-genomic era which was characterized by strong world-wide efforts to sequence the human genome and, in fact, ended significantly ahead of schedule. Today, we are at the entry of the probably much longer post-genomic era, which is characterized by the grand quest of making sense of the genomic text. This goal can only be achieved by a concerted effort involving biological experiments and computer analyses. Conquering the computer part is the task of the scientific field of computational biology or bioinformatics. Here we will describe two facets of computational biology. One is that of a discipline shaped by several grand challenge basic research problems. The other is that of a field driven by a strong demand for immediate answers to pressing practical problems in biotechnology, notably in pharmaceutics and medicine.

Keywords

Hide Markov Model Computational Biology Protein Structure Prediction Grand Challenge Docking Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Werner, Analyzing Regulatory Regions in Genomes, in Bioinformatics-From Genomes to Drugs (T. Lengauer, ed.), Wiley-VCH, Heidelberg, to appear.Google Scholar
  2. 2.
    V. Solovyev, Structure, Properties and Computer Identification of Eucaryotic Genes, in Bioinformatics-From Genomes to Drugs (T. Lengauer, ed.), Wiley-VCH, Heidelberg, to appear.Google Scholar
  3. 3.
    S. He, H. A. Scheraga, Brownian Dynamics Simulations of Protein Folding. J. Chem. Phys. 108 (1998) 287–300.CrossRefGoogle Scholar
  4. 4.
    D. Baker, A Surprising Simplicity to Protein Folding, Nature 405 (2000) 39–42.CrossRefGoogle Scholar
  5. 5.
    J. Kostrowicki, H. A. Scheraga, Application of the Diffusion Equation Method for Global Optimization of Oligopeptides, J. Phys. Chem. 96 (1992) 7442–7449.CrossRefGoogle Scholar
  6. 6.
    R. L. Dunbrack, Jr., Homology Modeling in Biology and Medicine, in Bioinformatics-From Genomes to Drugs (T. Lengauer, ed.), Wiley-VCH, Heidelberg, to appear.Google Scholar
  7. 7.
    R. M. Zimmer, Protein Structure Prediction and Applications in Structural Genomics, Protein Function Assignment and Drug Target Finding, in Bioinformatics-From Genomes to Drugs (T. Lengauer, ed.), Wiley-VCH, Heidelberg, to appear.Google Scholar
  8. 8.
    R. M. Zimmer, R. Thiele, Fast Protein Fold Recognition and Accurate Sequence-Structure Alignment, Proceedings of German Conference on Bioinformatics (GCB’96), R. Hofestädt, T. Lengauer, M. Löffler, D. Schomburg, eds., Springer Lecture Notes in Computer Science No. 1278 (1997) 137–148.Google Scholar
  9. 9.
    R. Thiele, R. M. Zimmer, T. Lengauer, Protein Threading by Recursive Dynamic Programming. J. Mol. Biol. 290, 3 (1999) 757–779CrossRefGoogle Scholar
  10. 10.
    Proteins: Structure, Function and Genetics, Suppl: Third Meeting on the Critical Assessment of Techniques for Protein Structure Prediction (1999). http://PredictionCenter.llnl.gov/casp3/Casp3.html
  11. 11.
    T. Lengauer, R. Zimmer, Structure Prediction Methods for Drug Design, Briefings in Bioinformatics 1,3 (2000)Google Scholar
  12. 12.
    S. Anderson, Structural genomics: keystone for a Human Proteome Project. Nat Struct Biol. 6,1 (1999)11–12Google Scholar
  13. 13.
    I. Andricioaei, J. E. Straub, Finding the Needle in the Haystack: Algorithms for Conformal Optimization, Computers in Physics 10, 5 (1996) 449.CrossRefGoogle Scholar
  14. 14.
    L. Piela, J. Kostrowicki, H. A. Scheraga, The Multiple—Minima Problem in the Conformational Analysis of Molecules. Deformation of the Potential Energy Hypersurface by the Diffusion Equation Method, J. Phys. Chem. 93 (1989) 3339–3346.Google Scholar
  15. 15.
    P. Kollman, Free Energy Calculations: Applications to Chemical and Biochemical Phenomena, Chemical Reviews 93 (1993) 2395–2417.CrossRefGoogle Scholar
  16. 16.
    M. K. Gilson et al., The Statistical-Thermodynmic Basis for Computation of Binding Affinities: A Critical review, Biophysical Journal 72 (1997) 1047–1069.CrossRefGoogle Scholar
  17. 17.
    J. D. Hirst, Predicting ligand binding energies, Current Opinion in Drug Discovery and Development 1 (1998) 28–33.Google Scholar
  18. 18.
    M. Rarey, M. Stahl, G. Klebe, Screening of Drug Databases, in Bioinformatics-From Genomes to Drugs (T. Lengauer, ed.), Wiley-VCH, Heidelberg, to appear.Google Scholar
  19. 19.
    E. O. Voit, Computational Analysis of Biochemical Systems, Cambridge University Press (2000)Google Scholar
  20. 20.
    M. Tomita et al., E-CELL: Software Environment for Whole-Cell Simulation, Bioinformatics 15, 1 (1999) 72–84.CrossRefGoogle Scholar
  21. 21.
    A. Zien, R. Küffner, R. Zimmer., T. Lengauer, Analysis of Gene Expression Data With Pathway Scores, Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology (ISMB2000), AAAI Press (2000) 407–417.Google Scholar
  22. 22.
    S. Fuhrman, S. Liang, X. Wen, R. Somogyi, Target Finding in Genomes and Proteomes, in Bioinformatics-From Genomes to Drugs (T. Lengauer, ed.), Wiley-VCH, Heidelberg, to appear.Google Scholar
  23. 23.
    P.-A. Binz et al., Proteome Analysis, in Bioinformatics-From Genomes to Drugs (T. Lengauer, ed.), Wiley-VCH, Heidelberg, to appear.Google Scholar
  24. 24.
    P., Bork, E.V. Koonin, Predicting Function from Protein Sequences: Where are the Bottlenecks? Nature Genet. 18 (1998) 313–318.CrossRefGoogle Scholar
  25. 25.
    M. A. Huynen, Y. Diaz-Lazcoz and P. Bork, Differential Genome Display, Trends in Genetics 13 (1997) 389–390.CrossRefGoogle Scholar
  26. 26.
    E. M. Marcotte et al., Detecting Protein Function and Protein-Protein Interactions from Genome Sequences, Science 285, 5428 (1999)751–753.Google Scholar
  27. 27.
  28. 28.
    H. Shatkay et al., Genes, Themes and Microarrays, Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology (ISMB2000), AAAI Press (2000) 317–328.Google Scholar
  29. 29.
    E. A. Clark et al., Genomic Analysis of Metastasis Reveals an Essential Role for RhoC, Nature 406 (2000)532–535.CrossRefGoogle Scholar
  30. 30.
    B. Kramer, G. Metz, M. Rarey, T. Lengauer, Ligand Docking and Screening with FlexX, Medical Chemistry Research 9, 7/8 (1999) 463–478.Google Scholar
  31. 31.
    M. Rarey, J. S. Dixon, Feature Trees: A New Molecular Similarity Measure Based on Tree Matching, J Comput Aided Mol Des. 12, 5 (1998) 471–490.CrossRefGoogle Scholar
  32. 32.
    M. J. Rieder, D. A. Nickerson, Analysis of Sequence Variations, in Bioinformatics-From Genomes to Drugs (T. Lengauer, ed.), Wiley-VCH, Heidelberg, to appear.Google Scholar
  33. 33.
    A. Krogh, M. Brown, I. S. Mian, K. Sjölander, D. Haussler, Hidden Markov Models in Computational Biology: Application to Protein Modeling, J. Mol. Biol. 235 (1994) 1501–1531.CrossRefGoogle Scholar
  34. 34.
    S. R. Eddy, Profile Hidden Markov Models, Bioinformatics 14,9 (1998) 755–763.CrossRefGoogle Scholar
  35. 35.
    T. Jaakola, M. Diekhans, D. Haussler, Using the Fisher Kernel Method to Detect Remote Protein Homologies, Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology (ISMB’99), AAAI Press (1999) 149–158.Google Scholar
  36. 36.
    A. Zien et al., Engineering Support Vector Machines Kernels that Recognize Translation Initiation Sites, Bioinformatics (2000) to appear.Google Scholar
  37. 37.
    A. Zien, R. Zimmer, T. Lengauer, A Simple Iterative Approach to Parameter Optimization, Proceedings of the Fourth Annual Conference on Research in Computational Molecular Biology (RECOMB’00), ACM Press (2000) 318–327.Google Scholar
  38. 38.
    R. Zimmer, T. Lengauer, Fast and Numerically Stable Parametric Alignment of Biosequences. Proceedings of the First Annual Conference on Research in Computational Molecular Biology (RECOMB’97) (1997) 344–353.Google Scholar
  39. 39.
  40. 40.

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Thomas Lengauer
    • 1
  1. 1.Institute for Algorithms and Scientific Computing GMD - German National Research Center for Information Technology and Institute of Computer ScienceUniversity of BonnGermany

Personalised recommendations