An Experimental Comparison of Orthogonal Compaction Algorithms

Extended Abstract
  • Gunnar W. Klau
  • Karsten Klein
  • Petra Mutzel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1984)

Abstract

We present an experimental study in which we compare the state-of-the-art methods for compacting orthogonal graph layouts. Given the shape of a planar orthogonal drawing, the task is to place the vertices and the bends on grid points so that the total area or the total edge length is minimised. We compare four constructive heuristics based on rectangular dissection and on turn-regularity, also in combination with two improvement heuristics based on longest paths and network ows, and an exact method which is able to compute provable optimal drawings of minimum total edge length.

We provide a performance evaluation in terms of quality and running time. The test data consists of two test-suites already used in previous experimental research. In order to get hard instances, we randomly generated an additional set of planar graphs.

References

  1. 1.
    C. Batini, E. Nardelli, and R. Tamassia. A layout algorithm for data-ow diagrams. IEEE Trans. Soft. Eng., SE–12(4):538–546, 1986.Google Scholar
  2. 2.
    R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern., SMC–18(1):61–79, 1988.CrossRefGoogle Scholar
  3. 3.
    M. Jünger and P. Mutzel. Maximum planar subgraphs and nice embeddings: Practical layout tools. Algorithmica, Special Issue on Graph Drawing, 16(1):33–59, 1996.MATHGoogle Scholar
  4. 4.
    P. Mutzel and R. Weiskircher. Optimizing over all combinatorial embeddings of a planar graph. In G. P. Cornuéjols, R. E. Burkard, and G. J. Woeginger, editors, Integer Programming and Combinatorial Optimization (IPCO’ 99), volume 1610 of LNCS, pages 361–376. Springer-Verlag, 1999.CrossRefGoogle Scholar
  5. 5.
    C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a planar graph. Technical report, Technische Universität Wien, 2000. Submitted for publication.Google Scholar
  6. 6.
    U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD’ 95), volume 1027 of LNCS, pages 254–266. Springer-Verlag, 1996.Google Scholar
  7. 7.
    P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the minimum number of bends. In Proc. 5th Workshop Algorithms Data Struct. (WADS’ 97), volume 1272 of LNCS, pages 331–344, 1997.Google Scholar
  8. 8.
    M. Eiglsperger, U. Fößmeier, and M. Kaufmann. Orthogonal graph drawing with constraints. In Proc. 11th Symposium on Discrete Algorithms (SODA’ 00). ACMSIAM, 2000.Google Scholar
  9. 9.
    G. W. Klau and P. Mutzel. Quasi-orthogonal drawing of planar graphs. Technical Report MPI–I–98–1–013, Max-Planck-Institut für Informatik, Saarbrücken, 1998.Google Scholar
  10. 10.
    S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, and L. Vismara. Turn-regularity and optimal area drawings for orthogonal representations. Computational Geometry Theory and Applications (CGTA). To appear.Google Scholar
  11. 11.
    G. W. Klau and P. Mutzel. Optimal compaction of orthogonal grid drawings. In G. P. Cornuéjols, R. E. Burkard, and G. J. Woeginger, editors, Integer Programming and Combinatorial Optimization (IPCO’ 99), volume 1610 of LNCS, pages 304–319. Springer-Verlag, 1999.CrossRefGoogle Scholar
  12. 12.
    C. Gutwenger, M. Jünger, G. W. Klau, and P. Mutzel. Graph drawing algorithm engineering with AGD. Technical report, Technische Universität Wien, 2000.Google Scholar
  13. 13.
    AGD. AGD User Manual. Max-Planck-Institut Saarbrücken, Universität Halle, Universität Köln, 1999. http://www.mpi-sb.mpg.de/AGD.
  14. 15.
    N. Gelfand and R. Tamassia. Algorithmic patterns for orthogonal graph drawing. In S. Whitesides, editor, Graph Drawing (Proc. GD’ 98), volume 1547 of Lecture Notes in Computer Science, pages 138–152. Springer-Verlag, 1998.Google Scholar
  15. 16.
    G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental comparison of four graph drawing algorithms. Computational Geometry: Theory and Applications, 7:303–316, 1997.MATHMathSciNetGoogle Scholar
  16. 17.
    G. Di Battista, A. Garg, and G. Liotta. An experimental comparison of three graph drawing algorithms. In Proceedings of the 11th Annual Symposium on Computational Geometry (SoCG’95), pages 306–315, 1995.Google Scholar
  17. 18.
    M. Jünger and P. Mutzel. Exact and heuristic algorithms for 2-layer straightline crossing minimization. In F. J. Brandenburg, editor, Proceedings of the 3rd International Symposium on Graph Drawing (GD’95), volume 1027 of LNCS, pages 337–348. Springer-Verlag, 1995.Google Scholar
  18. 19.
    F. J. Brandenburg, M. Himsolt, and C. Rohrer. An experimental comparison of force-directed and randomized graph drawing algorithms. In F. J. Brandenburg, editor, Proceedings of the 3rd International Symposium on Graph Drawing (GD’ 95), volume 1027 of LNCS, pages 76–87. Springer-Verlag, 1996.Google Scholar
  19. 20.
    R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421–444, 1987.MATHCrossRefMathSciNetGoogle Scholar
  20. 21.
    M. Patrignani. On the complexity of orthogonal compaction. In F. Dehne, A. Gupta, J.-R. Sack, and R. Tamassia, editors, Proc. 6th International Workshop on Algorithms and Data Structures (WADS’ 99), volume 1663 of LNCS, pages 56–61. Springer-Verlag, 1999.Google Scholar
  21. 22.
    T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John Wiley & Sons, New York, 1990.Google Scholar
  22. 23.
    G. W. Klau, K. Klein, and P. Mutzel. An experimental comparison of orthogonal compaction algorithms. Technical Report TR-186–1–00–03, Technische Universität Wien, 2000. Online version at http://www.ads.tuwien.ac.at/publications/TR/TR-186-1-00-03.

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Gunnar W. Klau
    • 1
  • Karsten Klein
    • 2
  • Petra Mutzel
    • 3
  1. 1.Technische Universität WienAustria
  2. 2.MPI für InformatikGermany
  3. 3.Technische Universität WienAustria

Personalised recommendations