A User Study in Similarity Measures for Graph Drawing

  • Stina Bridgeman
  • Roberto Tamassia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1984)


The need for a similarity measure for comparing two drawings of graphs arises in problems such as interactive graph drawing and the indexing or browsing of large sets of graphs. This paper builds on our previous work [3] by defining some additional similarity measures, refining some existing ones, and presenting the results of a user study designed to evaluate the suitability of the measures.


  1. 1.
    T. Biedl, J. Marks, K. Ryall, and S. Whitesides. Graph multidrawing: Finding nice drawings without defining nice. In GD’ 98, volume 1547 of LNCS, pages 347–355. Springer-Verlag, 1998.Google Scholar
  2. 2.
    T. C. Biedl and M. Kaufmann. Area-efficient static and incremental graph darwings. In ESA’ 97, volume 1284 of LNCS, pages 37–52. Springer-Verlag, 1997.Google Scholar
  3. 3.
    S. Bridgeman and R. Tamassia. Difference metrics for interactive orthogonal drawing. J. Graph Alg. Appl. to appear.Google Scholar
  4. 4.
    S. S. Bridgeman, J. Fanto, A. Garg, R. Tamassia, and L. Vismara. InteractiveGiotto: An algorithm for interactive orthogonal graph drawing. In GD’ 97, volume 1353 of LNCS, pages 303–308. Springer-Verlag, 1997.Google Scholar
  5. 5.
    E. Dengler and W. Cowan. Human perception of laid-out graphs. In GD’ 98, volume 1547 of LNCS, pages 441–443. Springer-Verlag, 1998.Google Scholar
  6. 6.
    E. Dengler, M. Friedell, and J. Marks. Constraint-driven diagram layout. In Proc. IEEE Sympos. on Visual Languages, pages 330–335, 1993.Google Scholar
  7. 7.
    G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental comparison of four graph drawing algorithms. Comput. Geom. Theory Appl., 7: 303–325, 1997.MATHGoogle Scholar
  8. 8.
    U. Fößmeier. Interactive orthogonal graph drawing: Algorithms and bounds. In GD’ 97, volume 1353 of LNCS, pages 111–123. Springer-Verlag, 1998.Google Scholar
  9. 9.
    J. E. Goodman and R. Pollack. Multidimensional sorting. SIAM J. Comput., 12(3):484–507, Aug. 1983.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    K. A. Lyons, H. Meijer, and D. Rappaport. Algorithms for cluster busting in anchored graph drawing. J. Graph Algorithms Appl., 2(1):1–24, 1998.MathSciNetGoogle Scholar
  11. 11.
    A. Marzal and E. Vidal. Computation of normalized edit distance and applications. IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(9):926–932, Sept. 1993.CrossRefGoogle Scholar
  12. 12.
    K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental map. J. Visual Lang. Comput., 6(2):183–210, 1995.CrossRefGoogle Scholar
  13. 13.
    S. North. Incremental layout in DynaDAG. In GD’ 95, volume 1027 of LNCS, pages 409–418. Springer-Verlag, 1996.Google Scholar
  14. 14.
    A. Papakostas, J. M. Six, and I. G. Tollis. Experimental and theoretical results in interactive graph drawing. In GD’ 96, volume 1190 of LNCS, pages 371–386. Springer-Verlag, 1997.Google Scholar
  15. 15.
    A. Papakostas and I. G. Tollis. Interactive orthogonal graph drawing. IEEE Trans. Comput., C-47(11):1297–1309, 1998.CrossRefMathSciNetGoogle Scholar
  16. 16.
    K. Ryall, J. Marks, and S. Shieber. An interactive system for drawing graphs. In GD’ 96, volume 1190 of LNCS, pages 387–393. Springer-Verlag, 1997.Google Scholar
  17. 17.
    R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern., SMC-18(1):61–79, 1988.CrossRefGoogle Scholar
  18. 18.
    W. A. Wickelgren. Cognitive Psychology. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Stina Bridgeman
    • 1
  • Roberto Tamassia
    • 1
  1. 1.Center for Geometric Computing Department of Computer ScienceBrown UniversityRhode Island

Personalised recommendations