A Fast Layout Algorithm for k-Level Graphs

  • Christoph Buchheim
  • Michael Jünger
  • Sebastian Leipert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1984)


We present a fast layout algorithm for k-level graphs with given permutations of the vertices on each level. The algorithm can be used in particular as a third phase of the Sugiyama algorithm [8]. In the generated layouts, every edge has at most two bends and is drawn vertically between these bends. The total length of short edges is minimized levelwise.


Optimal Placement Neighboring Level Short Edge Place Original Edge Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F. J. Brandenburg, M. Jünger, and P. Mutzel. Algorithmen zum automatischen Zeichnen von Graphen. Informatik-Spektrum 20, pages 199–207, 1997.Google Scholar
  2. 2.
    C. Buchheim, M. Jünger, and S. Leipert. A fast layout algorithm for k-level graphs. Technical report, Institut für Informatik, Universität zu Köln, 1999.Google Scholar
  3. 3.
    E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for drawing directed graphs. IEEE Transactions on Software Engineering, 19(3):214–230, 1993.CrossRefGoogle Scholar
  4. 4.
    M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM Journal on Algebraic and Discrete Methods, 4(3):312–316, 1983.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Jünger and P. Mutzel. 2-layer straightline crossing minimization: Performance of exact and heuristic algorithms. Journal of Graph Algorithms and Applications, 1:1–25, 1997.MathSciNetGoogle Scholar
  6. 6.
    Petra Mutzel et al. A library of algorithms for graph drawing. In S. H. Whitesides, editor, Graph Drawing’ 98, volume 1547 of Lecture Notes in Computer Science, pages 456–457. Springer Verlag, 1998.CrossRefGoogle Scholar
  7. 7.
    G. Sander. A fast heuristic for hierarchical Manhattan layout. In F. J. Brandenburg, editor, Graph Drawing’ 95, volume 1027 of Lecture Notes in Computer Science, pages 447–458. Springer Verlag, 1996.CrossRefGoogle Scholar
  8. 8.
    K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical systems. IEEE Transactions on Systems, Man, and Cybernetics, 11(2):109–125, 1981.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Christoph Buchheim
    • 1
  • Michael Jünger
    • 1
  • Sebastian Leipert
    • 1
  1. 1.Universität zu Köln, Institut für InformatikKölnGermany

Personalised recommendations