Visualization of the Autonomous Systems Interconnections with Hermes

  • Andrea Carmignani
  • Giuseppe Di Battista
  • Walter Didimo
  • Francesco Matera
  • Maurizio Pizzonia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1984)

Abstract

Hermes is a system for exploring and visualizing Autonomous Systems and their interconnections. It relies on a three-tiers architecture, on a large repository of routing information coming from heterogeneous sources, and on sophisticated graph drawing engine. Such an engine exploits static and dynamic graph drawing techniques.

References

  1. 2.
    T. Bates, E. Gerich, L. Joncheray, J. M. Jouanigot, D. Karrenberg, M. Terpstra, and J. Yu. Representation of ip routing policies in a routing registry. On line, 1994. ripe-181, http://www.ripe.net, rfc 1786.
  2. 3.
    P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the minimum numbr of bends. IEEE Transactions on Computers, 49(8), 2000.Google Scholar
  3. 4.
    T. C. Biedl and M. Kaufmann. Area-efficient static and incremental graph darwings. In R. Burkard and G. Woeginger, editors, Algorithms (Proc. ESA’ 97), volume 1284 of Lecture Notes Comput. Sci., pages 37–52. Springer-Verlag, 1997.Google Scholar
  4. 5.
    U. Brandes and D. Wagner. Dynamic grid embedding with few bends and changes. In K.-Y. Chwa and O. H. Ibarra, editors, ISAAC’98, volume 1533 of Lecture Notes Comput. Sci., pages 89–98. Springer-Verlag, 1998.Google Scholar
  5. 6.
    S. Bridgeman and R. Tamassia. Difference metrics for interactive orthogonal graph drawing algorithms. In S. H. Withesides, editor, Graph Drawing (Proc. GD’ 98), volume 1547 of Lecture Notes Comput. Sci., pages 57–71. Springer-Verlag, 1998.Google Scholar
  6. 7.
    S. S. Bridgeman, J. Fanto, A. Garg, R. Tamassia, and L. Vismara. Interactive-Giotto: An algorithm for interactive orthogonal graph drawing. In G. Di Battista, editor, Graph Drawing (Proc. GD’ 97), volume 1353 of Lecture Notes Comput. Sci., pages 303–308. Springer-Verlag, 1998.Google Scholar
  7. 8.
    M. Bukowy and J. Snabb. RIPE NCC database documentation update to support RIPE DB ver. 2.2.1. On line, 1999. ripe-189, http://www.ripe.net.
  8. 9.
    CAIDA. Otter: Tool for topology display. On line. http://www.caida.org.
  9. 10.
    CAIDA. Plankton: Visualizing nlanr’s web cache hierarchy. On line. http://www.caida.org.
  10. 11.
    R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis. Dynamic graph drawings: Trees, series-parallel digraphs, and planar ST-digraphs. SIAM J. Comput., 24(5):970–1001, 1995.MATHCrossRefMathSciNetGoogle Scholar
  11. 13.
    G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. Orthogonal and quasi-upward drawings with vertices of prescribed sizes. In J. Kratochvil, editor, Graph Drawing (Proc. GD’ 99), volume 1731 of Lecture Notes Comput. Sci., pages 297–310. Springer-Verlag, 1999.Google Scholar
  12. 14.
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper Saddle River, NJ, 1999.MATHCrossRefGoogle Scholar
  13. 15.
    G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental comparison of four graph drawing algorithms. Comput. Geom. Theory Appl., 7:303–325, 1997.MATHGoogle Scholar
  14. 16.
    G. Di Battista, R. Lillo, and F. Vernacotola. Ptolomaeus: The web cartographer. In S. H. Withesides, editor, Graph Drawing (Proc. GD’ 98), volume 1547 of Lecture Notes Comput. Sci., pages 444–445. Springer-Verlag, 1998.Google Scholar
  15. 17.
    M. Dodge. An atlas of cyberspaces. On line. http://www.cybergeography.com/atlas/atlas.html.
  16. 18.
    P. Eades, R. F. Cohen, and M. L. Huang. Online animated graph drawing for web navigation. In G. Di Battista, editor, Graph Drawing (Proc. GD’ 97), volume 1353 of Lecture Notes Comput. Sci., pages 330–335. Springer-Verlag, 1997.Google Scholar
  17. 19.
    P. Eades, W. Lai, K. Misue, and K. Sugiyama. Preserving the mental map of a diagram. In Proceedings of Compugraphics 91, pages 24–33, 1991.Google Scholar
  18. 20.
    U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD’ 95), volume 1027 of Lecture Notes Comput. Sci., pages 254–266. Springer-Verlag, 1996.Google Scholar
  19. 22.
    B. Huffaker. Tools to visualize the internet multicast backbone. On line. http://www.caida.org.
  20. 26.
    K. Miriyala, S. W. Hornick, and R. Tamassia. An incremental approach to aesthetic graph layout. In Proc. Internat. Workshop on Computer-Aided Software Engineering, 1993.Google Scholar
  21. 27.
    K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental map. J. Visual Lang. Comput., 6(2):183–210, 1995.CrossRefGoogle Scholar
  22. 28.
    S. North. Incremental layout in DynaDAG. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD’ 95), volume 1027 of Lecture Notes Comput. Sci., pages 409–418. Springer-Verlag, 1996.Google Scholar
  23. 29.
    A. Papakostas and I. G. Tollis. Interactive orthogonal graph drawing. IEEE Transactions on Computers, 47(11):1297–1309, 1998.CrossRefMathSciNetGoogle Scholar
  24. 30.
    C. Rachit. Octopus: Backbone topology discovery. On line. http://www.cs.cornell.edu/cnrg/topology aware/topology/Default.html.
  25. 31.
    Y. Rekhter. A border gateway protocol 4 (bgp-4). IETF, rfc 1771.Google Scholar
  26. 32.
    R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421–444, 1987.MATHCrossRefMathSciNetGoogle Scholar
  27. 33.
    R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern., SMC-18(1):61–79, 1988.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Andrea Carmignani
    • 1
  • Giuseppe Di Battista
    • 1
  • Walter Didimo
    • 1
  • Francesco Matera
    • 1
  • Maurizio Pizzonia
    • 1
  1. 1.Dipartimento di Informatica e AutomazioneUniversità di Roma TreRomaItaly

Personalised recommendations