Microbes and Music

  • Fran Soddell
  • Jacques Soddell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1886)

Abstract

L-systems are string rewriting mechanisms used to create images of complex organisms from a simple set of an axiom and production rules. They have also been used to create music. This study developed a Musical Instrument Digital Interface interpretation suitable for applying to strings generated by L-systems that had been previously developed to model the growth of filamentous microbes (fungi and bacteria). The resulting sound files helped distinguish between organisms with different growth rates, provided some insight into the temporal differences among stages of growth, and also resulted in interesting musical pieces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Axen, U., Choi, I.: Investigating geometric data with sound. Proceedings of ICAD (1996) http://www.santafe.edu/~icad/ICAD96/proc96/axen.htm [accessed June 2000]
  2. 2.
    Barrass, S., Kramer, G.: Using sonification. Multimedia Systems 7 (1999) 23–31CrossRefGoogle Scholar
  3. 3.
    Dunn, J., Clark, M.: Life Music: The sonification of proteins. Leonardo On-Line (2000) http://mitpress.mit.edu/e-journals/Leonardo/isast/articles/lifemusic.htm [accessed June 2000]
  4. 4.
    Flowers, J., Buhman, C, Turnage, K.: Data sonification from the desktop: Should sound be part of standard data analysis software? Proceedings of ICAD (1996) http://www.santafe.edu/~icad/ICAD96/proc96/flowers.htm [accessed June 2000]
  5. 5.
    Kaper, H., Wiebel, E.: Data sonification and sound visualization. Computing in Science & Engineering 1(4) (1999) 48–58CrossRefGoogle Scholar
  6. 6.
    Liddell, C, Hansen, D.: Visualizing Complex Biological Interactions in the Soil Ecosystem. The Journal of Visualization and Computer Animation 4 (1993) 3–12CrossRefGoogle Scholar
  7. 7.
    Lindenmayer, A.: Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J. Theoret. Biol. 18 (1968) 280–299CrossRefGoogle Scholar
  8. 8.
    Lindenmayer, A.: Mathematical models for cellular interactions in development II. Simple and branching filaments with two-sided inputs. J. Theoret. Biol. 18 (1968) 300–315CrossRefGoogle Scholar
  9. 9.
    Lindenmayer, A.: Developmental systems and languages in their biological context. In: Developmental Systems and Languages, eds. Herman, G.T., Rozenberg, G. North-Holland Publ. Co., Amsterdam (1975) 1–40Google Scholar
  10. 10.
    Lindenmayer, A., Jurgensen, H.: Grammars of Development: Discrete state models for growth, differentiation, and gene expression in modular organisms. Report No. 285 Dept, of Computer Science, University of Western Ontario, CanadaGoogle Scholar
  11. 11.
    Madhyastha, T., Reed, D.: Data sonification: Do you see what I hear? IEEE Software 12(2) (1995) 45–56CrossRefGoogle Scholar
  12. 12.
    Martins, A., Rangayyan, R., Portela, L., Amaro, E., Ruschioni, R.: Auditory display and sonification of textured image. Proceedings of ICAD (1996) http://www.santafe.edu/~icad/ICAD96/proc96/martins.htm [accessed June 2000]
  13. 13.
    Mason, S., Saffle, M.: L-Systems, Melodies and Musical Structure. Leonardo Music Journal 4 (1994) 31–38CrossRefGoogle Scholar
  14. 14.
    McCormack, J.: Grammar-Based Music Composition. Complexity International 3 (1996) http://www.csu.edu.au/ci/vol3/mccorm/mccorm.html [accessed March 2000]
  15. 15.
    Nelson, G.: Real Time Transformation of Musical Material with Fractal Algorithms. Computers Math. Applic. 32,1 (1996) 109–116CrossRefGoogle Scholar
  16. 16.
    Mucherino, N.: A Paradigm For Future Music? WWW. http://www-ks.rus.uni-stuttgart.de/people/schulz/fmusic/recursion.html, March (1998)
  17. 17.
    Prusinkiewicz, P.: Modeling of spatial structure and development of plants: a review. Scientia Horticulturae 74, (1998) 113–149CrossRefGoogle Scholar
  18. 18.
    Prusinkiewicz, P., Hanan, J.: Lindenmayer systems, fractals, and plants. Lecture Notes in Biomathematics, Springer-Verlag, Berlin (1989)MATHGoogle Scholar
  19. 19.
    Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer-Verlag, New York (1990)MATHGoogle Scholar
  20. 20.
    Sharp, D.:LMUSe. Software. WWW. http://www.users.interport.net/~dsharp/readme.html (1998) [accessed June 2000]
  21. 21.
    Schneider, C, Walde, R.: L-system computer simulations of branching divergence in some dorsiventral members of the tribe Polysiphonieae (Rhodomelaceae, Rhodophyta). Phycologia 31, (1992) 581–590Google Scholar
  22. 22.
    Smith, A.: Plant, fractals and formal languages. Comp. Graph. 18, July (1984) 1–10CrossRefGoogle Scholar
  23. 23.
    Soddell, F., Seviour, R., Soddell J.: Using Lindenmayer systems to investigate how filamentous fungi may produce round colonies. In: Complex Systems: Mechanisms of Adaptation. eds. Stonier, R.J., Xing Huo Yu. IOS Press, Amsterdam (1994) 61–68Google Scholar
  24. 24.
    Soddell, J., Seviour, R.: Incidence and morphological variability of Nocardia pinensis in Australian activated sludge plants. Water Research (1994) 28 2343–2351CrossRefGoogle Scholar
  25. 25.
    Walker, B., Kramer, G.: Mappings and metaphors in auditory displays: An experimental assessment. Proceedings of ICAD (1996) http://www.santafe.edu/~icad/ICAD96/proc96/walker5.htm [accessed June 2000]
  26. 26.
    Wilson, C, Lodha, S.: Listen: A data sonification toolkit. Proceedings of ICAD (1996) http://www.santafe.edu/~icad/ICAD96/proc96/lodha.htm [accessed June 2000]
  27. 27.
    Witten, M.: The Sounds of Science: II. Listening to dynamical systems-Towards a musical exploration of complexity. Computers Math. Applc. 32, No. 1 (1996) 145–173CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Fran Soddell
    • 1
  • Jacques Soddell
    • 2
  1. 1.La Trobe UniversityBendigoAustralia
  2. 2.Biotechnology Research CentreLa Trobe UniversityBendigoAustralia

Personalised recommendations