Advertisement

Optimal Mapping of Pipeline Algorithms

  • Daniel González
  • Francisco Almeida
  • Luz Marina Moreno
  • Casiano Rodríguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1900)

Abstract

The optimal assignment of computations to processors is a crucial factor determining the effectiveness of a parallel algorithm. We analyze the problem of finding the optimal mapping of a pipeline algorithm on a ring of processors. There are too many variables to consider, the number of virtual processes to be simulated by a physical processor and the size of the packets to be communicated. We provide an analytical model for an optimal approach to these elements. The low errors observed and the simplicity of our proposal makes this mechanism suitable for its introduction in a parallel tool that compute the parameters automatically at running time.

Keywords

Parallel Algorithm Knapsack Problem Optimal Mapping Resource Allocation Problem Optimal Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andonov R., Rajopadhye S.. Optimal Orthogonal Tiling of 2D Iterations. Journal of Parallel and Distributed computing, 45(2), (1997) 159–165.zbMATHCrossRefGoogle Scholar
  2. 2.
    Morales D., Almeida F., García F., González J., Roda J., Rodríguez C.. A Skeleton for Parallel Dynamic Programming. Euro-Par’99 Parallel Processing Lecture Notes in Computer Science, Vol. 1685. Springer-Verlag, (1999) 877–887.Google Scholar
  3. 3.
    Morales D., Roda J., Almeida F., Rodríguez C., García F.. Integral Knapsack Problems: Parallel Algorithms and their Implementations on Distributed Systems. Proceedings of the 1995 International Conference on Supercomputing. ACM Press. (1995) 218–226.Google Scholar
  4. 4.
    Ramanujam J., Sadayappan.. Tiling Multidimensional Iterations Spaces for Non Shared-Memory Machines. Supercomputing’91. (1991) 111–120.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Daniel González
    • 1
  • Francisco Almeida
    • 1
  • Luz Marina Moreno
    • 1
  • Casiano Rodríguez
    • 1
  1. 1.Dpto. Estadística, I. O. y ComputacionUniversidad de La LagunaLa LagunaSpain

Personalised recommendations