Advertisement

A Hierarchical Approach to Irregular Problems

  • Fabrizio Baiardi
  • Primo Becuzzi
  • Sarah Chiti
  • Paolo Mori
  • Laura Ricci
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1900)

Abstract

Irregular problems require the computation of some properties for a set of elements irregularly distributed in a domain in a dynamic way. Most irregular problems satisfy a locality property because the properties of an element e depend upon the elements “close” to e. We propose a methodology to develop a highly parallel solution based on load balancing strategies that respects locality, i.e. e and most of the elements close to e are mapped onto the same processing node. We present the experimental results of the application of the methodology to the n-boby problem and to the adaptive multigrid method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. J. Aarset, M. Henon, and R. Wielen. Numerical methods for the study of star cluster dynamics. Astronomy and Astrophysics, 37(2), 1974.Google Scholar
  2. [2]
    J.E. Barnes and P. Hut. A hierarchical O(nlogn) force calculation algorithm. Nature, 324, 1986.Google Scholar
  3. [3]
    M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comp. Physics, 53, 1984.Google Scholar
  4. [4]
    W. Briggs. A multigrid tutorial SIAM, 1987.Google Scholar
  5. [5]
    P. Hanrahan, D. Salzman, and L. Aupperle. A rapid hierarchical radiosity algorithm. Computer Graphics (SIGGRAPH’ 91 Proceedings), 25(4), 1991.Google Scholar
  6. [6]
    J.R. Pilkington and S.B. Baden. Dynamic partitioning of non-uniform structured workloads with space filling curves. IEEE TOPDS, 7(3), 1996.Google Scholar
  7. [7]
    J.K. Salmon. Parallel Hierarchical N-body Methods. PhD thesis, California Institute of Technology, 1990.Google Scholar
  8. [8]
    J.P. Singh. Parallel Hierarchical N-body Methods and their Implications for Multiprocessors. PhD thesis, Stanford University, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Fabrizio Baiardi
    • 1
  • Primo Becuzzi
    • 1
  • Sarah Chiti
    • 1
  • Paolo Mori
    • 1
  • Laura Ricci
    • 1
  1. 1.Dipartimento di InformaticaUniversitá di PisaPISA

Personalised recommendations