Advertisement

Parallelizing an Unstructured Grid Generator with a Space-Filling Curve Approach

  • Jörn Behrens
  • Jens Zimmermann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1900)

Abstract

A new parallel partitioning algorithm for unstructured par- allel grid generation is presented. This new approach is based on a space- filling curve. The space-filling curve’s indices are calculated recursively and in parallel, thus leading to a very efficient and fast load distribution. The resulting partitions have good edge-cut and load balancing charac- teristics.

Keywords

Load Balance Unstructured Grid Grid Generator Synchronization Point Oceanic Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Behrens. An adaptive semi-Lagrangian advection scheme and its parallelization. Mon. Wea. Rev., 124(10):2386–2395, 1996.CrossRefGoogle Scholar
  2. 2.
    J. Behrens, K. Dethloff, W. Hiller, and A. Rinke. Evolution of small-scale filaments in an adaptive advection model for idealized tracer transport. Mon. Wea. Rev., 128, 2000. in press.Google Scholar
  3. 3.
    G. Breinholt and C. Schierz. Algorithm 781: Generating hilbert’s space-filling curve by recursion. AMS Trans. Math. Softw., 24:184–189, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. Diekmann, D. Meyer, and B. Monien. Parallel decomposition of unstructured FEM-meshes. In Proceedings of IRREGULAR 95, volume 980 of Lecture Notes in Computer Science, pages 199–215. Springer-Verlag, 1995.Google Scholar
  5. 5.
    M. Griebel and G. Zumbusch. Hash-storage techniques for adaptive mulitlevel solvers and their domain decomposition parallelization. Contemporary Mathematics, 218:279–286, 1998.MathSciNetGoogle Scholar
  6. 6.
    D. Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück. Math. Ann., 38:459–460, 1891.CrossRefMathSciNetGoogle Scholar
  7. 7.
    M. T. Jones and P. E. Plassmann. Parallel algorithms for the adaptive refinement and partitioning of unstructured meshes. In Proceedings of the Scalable High Performance Computing Conference, pages 478–485. IEEE Computer Society Press, 1994.Google Scholar
  8. 8.
    G. Karypis and V. Kumar. Metis-A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices. University of Minesota, Dept. of Computer Science/ Army HPC Research Center, Mineapolis, MN 55455, 1998. Version 4.0.Google Scholar
  9. 9.
    G. Lafruit and J. Cornelis. A space-filling curve image-scan for the parallelization of the two-dimensional fast wavelet transform. In Proceedings of the 1995 IEEE Workshop on Nonlinear Signal and Image Processing, http://poseidon.csd.auth.gr/Workshop/, 1995. Aristotle University of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki 540 06, P.O Box 451, Greece.Google Scholar
  10. 10.
    S. Roberts, S. Kalyanasundaram, M. Cardew-Hall, and W. Clarke. A key based parallel adaptive refinement technique for finite element methods. Technical report, Australian National University, Canberra, ACT 0200, Australia, 1997.Google Scholar
  11. 11.
    K. Schloegel, G. Karypis, and V. Kumar. Multilevel diffusion schemes for repartitioning of adaptive meshes. J. Par. Distr. Comp., 47:109–124, 1997.CrossRefGoogle Scholar
  12. 12.
    C. Walshaw, M. Cross, M. Everett, and S. Johnson. A parallelizable algorithm for partitioning unstructured meshes. In A. Ferreira and J. D. P. Rolim, editors, Parallel Algorithms for Irregular Problems: State of the Art, pages 25–46, Dordrecht, 1995. Kluwer Academic Publishers.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Jörn Behrens
    • 1
  • Jens Zimmermann
    • 2
  1. 1.Munich University of TechnologyMünchenGermany
  2. 2.Ludwig-Maximilians-UniversitätMünchenGermany

Personalised recommendations