Low Communication Parallel Multigrid

A Fine Level Approach
  • Marcus Mohr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1900)


The most common technique for the parallelization of multi- grid methods is grid partitioning. For such methods Brandt and Diskin have suggested the use of a variant of segmental refinement in order to re- duce the amount of inter-processor communication. A parallel multigrid method with this technique avoids all communication on the finest grid levels. This article will examine some features of this class of algorithms as compared to standard parallel multigrid methods. In particular, the communication pattern will be analyzed in detail.


elliptic pde parallel multigrid domain decomposition communication cost 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Brandt, Multi-level adaptive solutions to boundary value problems, Mathematics of Computation 31 (1977) 333–390.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Brandt, B. Diskin, Multigrid Solvers on Decomposed Domains, Contemporary Mathematics 157 (1994) 135–155.MathSciNetGoogle Scholar
  3. 3.
    B. Diskin, Multigrid Solvers on Decomposed Domains, M. Sc. Thesis, Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science, 1993.Google Scholar
  4. 4.
    M. Griebel and G. Zumbusch, Parnass: Porting gigabit-LAN components to a workstation cluster, in: W. Rehm, ed., Proceedings des 1. Workshop Cluster-Computing, 6.-7. November 1997, in Chemnitz, (Chemnitzer Informatik Berichte, CSR-97-05) 101–124.Google Scholar
  5. 5.
    M. Jung, On the parallelization of multi—grid methods using a non—overlapping domain decomposition data structure, Appl. numer. Math. 1 (1997) 119–138.CrossRefGoogle Scholar
  6. 6.
    L. Matheson, R. Tarjan, Parallelism in Multigrid Methods: How much is too much?, Int. J. Parallel Programming 5 (1996) 397–432.CrossRefGoogle Scholar
  7. 7.
    M. Mohr, Kommunikationsarme parallele Mehrgitteralgorithmen, Diplomarbeit, Institut für Mathematik, TU München, 1997.Google Scholar
  8. 8.
    M. Mohr, U. Rüde, Communication Reduced Parallel Multigrid: Analysis and Experiments, Technical Report No. 394, University of Augsburg, 1998.Google Scholar
  9. 9.
    D. Xie, L. Scott, The Parallel U—Cycle Multigrid Method, Virtual Proceedings ofthe 8th Copper Mountain Conference on Multigrid Methods, MGNET, 1997, (

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Marcus Mohr
    • 1
  1. 1.System Simulation Group of the Computer Science DepartmentFriedrich-Alexander-University ErlangenNurembergGermany

Personalised recommendations