Advertisement

Uncertainty Modeling for Optimal Structure from Motion

  • Daniel D. Morris
  • Kenichi Kanatani
  • Takeo Kanade
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1883)

Abstract

The parameters estimated by Structure from Motion (SFM) contain inherent indeterminacies which we call gauge freedoms. Under a perspective camera, shape and motion parameters are only recovered up to an unknown similarity transformation. In this paper we investigate how covariance-based uncertainty can be represented under these gauge freedoms. Past work on uncertainty modeling has implicitly imposed gauge constraints on the solution before considering covariance estimation. Here we examine the effect of selecting a particular gauge on the uncertainty of parameters. We show potentially dramatic effects of gauge choice on parameter uncertainties. However the inherent geometric uncertainty remains the same irrespective of gauge choice. We derive a Geometric Equivalence Relationship with which covariances under different parametrizations and gauges can be compared, based on their true geometric uncertainty. We show that the uncertainty of gauge invariants exactly captures the geometric uncertainty of the solution, and hence provides useful measures for evaluating the uncertainty of the solution. Finally we propose a fast method for covariance estimation and show its correctness using the Geometric Equivalence Relationship.

Keywords

Uncertainty Modeling Motion Parameter Tangent Plane Generalize Inverse Normal Covariance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. B. Atkinson, Close Range Photogrammetry and Machine Vision, Whittles Publ., Caithness, Scotland, (1996).Google Scholar
  2. 2.
    R. Hartley, Euclidean reconstruction from uncalibrated views, Proc. DARPAESPRIT Workshop App. Invariants in Comp. Vis., Portugal, 1993 187–202.Google Scholar
  3. 3.
    A. Heyden & K. Astrom, Euclidean reconstruction from image sequences with varying and unknown focal length and principal point, Proc. Comp. Vision Patt. Recog., Peurto Rico, 1997 438–443.Google Scholar
  4. 4.
    T. Kanade & D. D. Morris, Factorization methods for structure from motion, Phil. Trans. R. Soc. Long. A, 1998 1153–1173.Google Scholar
  5. 5.
    K. Kanatani, Statistical Optimization for Geometric Computation: Theory and Practice, Elsevier, Amsterdam, (1996).zbMATHCrossRefGoogle Scholar
  6. 6.
    K. Kanatani, Geometric information criterion for model selection, Int. J. Comp. Vision (1998), 26(3), 171–189.CrossRefGoogle Scholar
  7. 7.
    K. Kanatani & D. D. Morris, Gauges and gauge transformations in 3-D reconstruction from a sequence of images, To appear in ACCV 2000.Google Scholar
  8. 8.
    L. L. Kontsevich, M. L. Kontsevich & A. K. Shen, Two algorithms for reconstructing shapes, Avtometriya (1987), (5), 76–81, (Transl. Optoelec., Instrum. Data Proc., no. 5. 76-81, 1987).Google Scholar
  9. 9.
    D. D. Morris & T. Kanade, A unified factorization algorithm for points, line segments and planes with uncertainty models, Proc. Sixth Int. Conf. Comp. Vision, Bombay, India, 1998 696–702.Google Scholar
  10. 10.
    C. Poelman & T. Kanade, A paraperspective factorization method for shape and motion recovery, IEEE Trans. Patt. Anal. Mach. Intell. (Mar. 1997), 19(3), 206–18.Google Scholar
  11. 11.
    L. Quan & T. Kanade, Affine structure from line correspondances with uncalibrated affine cameras, IEEE Trans. Patt. Anal. Mach. Intell. (1997), 19(8), 834–845.CrossRefGoogle Scholar
  12. 12.
    P. Sturm & B. Triggs, A factorization based algorithm for multi-image projective structure and motion, Proc. Euro. Conf. Comp. Vision, Cambridge, UK, 1996 709–720.Google Scholar
  13. 13.
    R. Szeliski & S. B. Kang, Recovering 3D shape and motion from image streams using non-linear least squares, J. of Visual Comm. and Image Rep. (Mar. 1994), 5(1), 10–28.Google Scholar
  14. 14.
    R. Szeliski & S. B. Kang, Shape ambiguities in structure from motion, IEEE Trans. Patt. Anal. Mach. Intell. (May 1997), 19(5), 506–512.Google Scholar
  15. 15.
    J. I. Thomas, A. Hanson & J. Oliensis, Refining 3D reconstructions: A theoretical and experimental study of the effect of cross-correlations, CVGIP (Nov. 1994), 60(3), 359–370.Google Scholar
  16. 16.
    J. Weng, N. Ahuja & T. Huang, Optimal motion and structure estimation, IEEE Trans. Patt. Anal. Mach. Intell. (1993), 15(9), 864–884.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Daniel D. Morris
    • 1
  • Kenichi Kanatani
    • 2
  • Takeo Kanade
    • 1
  1. 1.Robotics InstituteCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Computer ScienceGunma UniversityKiryu, GunmaJapan

Personalised recommendations