Advertisement

2-D Spatial Indexing Scheme in Optimal Time

  • Nectarios Kitsios
  • Christos Makris
  • Spyros Sioutas
  • Athanassios Tsakalidis
  • John Tsaknakis
  • Bill Vassiliadis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1884)

Abstract

We consider the 2-dimensional space with integer coordinates in the range [1, N] x [1, N]. We present the MPST (Modified Priority Search Tree) index structure which reports the k points that lie inside the quadrant query range (- ∞, b] x (- ∞, c] in optimal O(k) time. Our Index Scheme is simple, fast and it can be used in various geometric or spatial applications such as: (1) 2 D dominance reporting on a grid (2) 2D maximal elements on a grid. Then, based on structures of Gabow et al. [6] and Beam and Fich [31] we describe an index scheme, which handles in an efficient way window queries in spatial database applications. In the general case in which the plane has real coordinates the above time results are slowed down by adding a logarithmic factor due to the normalization technique.

Keywords

Query Range Spatial Database Search Path Minimum Bounding Rectangle Query Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K.: Range searching, Technical Report CS-1996-05, Dept. of Computer Science, Duke University (1996)Google Scholar
  2. 2.
    Arge, L., Vitter, J.S.:Optimal dynamic interval management in external memory, Proceedings of the IEEE Symposium on Foundations of Computer Science (1996)Google Scholar
  3. 3.
    Driscoll, J. R., Sarnak, N., Sleator, D. D., Tarjan, R. E.: Making data structures persistent, J. Comp. Syst. Sci. 38 pp. 86–124 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Comer, D.: The ubiquitous B-tree, ACM Computing Surveys, 11(2) (1979)Google Scholar
  5. 5.
    Fries, O., Mehlhorn, K., Naher, S. and Tsakalidis, A.: A loglogn data structure for three sided rane queries, Inform. Process. Lett. 25, pp. 269–273 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gabow, H. N., Bentley, J. L., and Tarjan, R. E.: Scaling and related techniques for geometry problems, in Proceedings, l6th Annual ACM Symp. on Theory of Computing, pp. 135–143 (1984)Google Scholar
  7. 7.
    Gupta, P., Janardan, R., Smid, M. and Dasgupta, B.: The rectangle enclosure and point dominance problem revisited, in, Proceedings, 11th Annual ACM Symp. on Comp. Geometry, pp. 162–171 (1995)Google Scholar
  8. 8.
    Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestor, SIAM J. Comput. 13, pp. 338–355 (1994)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Karlsson, R.G. and Overmars, M. H.: Scanline algorithms on a grid, Technical Rep. RUU-CS-86-18, Dept. of Computer Science, University of Utrecht (1986)Google Scholar
  10. 10.
    Matousek, J.: Geometric range searching, ACM Computing Surveys 26, pp. 421–561 (1994)MathSciNetCrossRefGoogle Scholar
  11. 11.
    McCreight, E.M.: Priority search trees, SIAM J. Comput. 14, pp. 257–276 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Overmars, M.H.: Efficient data structures for range searching on a grid, J. Algorithms 9, pp. 254–275 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Preparata, F.P. and Shamos, M. I.: Computational Geometry, Springer-Verlag, New York, (1985)Google Scholar
  14. 14.
    Vuillemin, J.: A unifying look at data structures, C. ACM 23 pp. 229–239 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Grossi, R., Italiano, G., F.: Efficient cross-trees for external memory, In J. Abello and J.S. Vitter, editors, External Algorithms and Visualization (1998)Google Scholar
  16. 16.
    Guttman, A.: R-trees: A Dynamic Index Structure for Spatial Searching, ACM SIGMOD, (1984)Google Scholar
  17. 17.
    Sellis, T., Roussopoulos, N., Faloutsos, C.,: The R+-tree: A Dynamic Index for Multidimensional Objects, VLDB (1987)Google Scholar
  18. 18.
    Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an Efficient and Robust Access Method for Points and Rectangles, ACM SIGMOD (1990)Google Scholar
  19. 19.
    Papadias, D., Theodoridis, Y.: Spatial Relations, Minimum Bounding Rectangles, and Spatial Data Structures, International Journal of Geographic Information Science, Vol. 11(2) (1997)Google Scholar
  20. 20.
    Theodoridis, Y., Papadias, D., Stefanakis, E., Sellis, T.: Direction Relations and Two-Dimensional Range Queries: Optimization Techniques, Data & Knowledge Engineering, vol. 27(3) (1998)Google Scholar
  21. 21.
    Theodoridis, Y., Vazirgiannis, M., Sellis, T.:Spatio-Temporal Indexing for Large Multimedia Applications, 3” IEEE Conference on Multimedia Computing and Systems, (1996)Google Scholar
  22. 22.
    Theodoridis, Y., Sellis, T.: A Model for The Prediction of R-Tree Performance, ACM PODS(1996)Google Scholar
  23. 23.
    Gaede, V.: Optimal Redundancy in Spatial Database Systems, International Symposium on Spatial Databases (SSD) (1995)Google Scholar
  24. 24.
    Hoel, E., Samet, H.: Benchmarking Spatial Join Operations with Spatial Output, VLDB Conference (1995)Google Scholar
  25. 25.
    Kanellakis, P.C., Ramaswamy, S., Vengroff, D.E., Vitter, J.S.: Indexing for data models with constraints and classes, Journal of Computer and System Sciences, 52(3) (1996)Google Scholar
  26. 26.
    Mehlhorn., K., Data Structures and Algorithms 3-Multidimensional Searching and Computational Geometry, Springer Verlag (1984)Google Scholar
  27. 27.
    Ramaswamy, S., Subramanian, S.: Path Caching: a technique for optimal external searching in Proceedings of the 13th ACM Conference on Principles of Database Systems (1994)Google Scholar
  28. 28.
    Subramanian, S., Ramaswamy, S.: The P-range tree: a new data structure for range searching in secondary memeory, ACM-SIAM Symposium on Discrete Algorithms (1995)Google Scholar
  29. 29.
    Vengroff, D.,E., Vitter, J.,S., Efficient 3-d range searching in external memory, ACM Symposium on Theory of Computation (1996)Google Scholar
  30. 30.
    Vitter, J.S.: External Memory Algorithms invited paper in European Symposium on Algorithms (1998)Google Scholar
  31. 31.
    Beam, P., Fich, F.: Optimal Bounds for the Predecessor Problem, In Proceedings of the Thirty First Annual ACM Symposium on Theory of Computing, Atlanta, GA (1999)Google Scholar
  32. 32.
    Arge, L., Samoladas, V., Vitter, J.S.: Two dimensional indexability and optimal range search indexing, in Proceedings of the ACM Symposium on Principles of Database Systems, (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Nectarios Kitsios
    • 1
  • Christos Makris
    • 1
  • Spyros Sioutas
    • 1
  • Athanassios Tsakalidis
    • 1
    • 2
  • John Tsaknakis
    • 1
  • Bill Vassiliadis
    • 1
    • 2
  1. 1.Department of Computer Engineering and Informatics: Graphics, Multimedia and GIS LaboratoryUniversity of PatrasPatrasGreece
  2. 2.Computer Technology Institute: Research Unit 5PatrasGreece

Personalised recommendations