Advertisement

Optimal Multidimensional Query Processing Using Tree Striping

  • Stefan Berchtold
  • Christian Böhm
  • Daniel A. Keim
  • Hans-Peter Kriegel
  • Xiaowei Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1874)

Abstract

In this paper, we propose a new technique for multidimensional query processing which can be widely applied in database systems. Our new technique, called tree striping, generalizes the well-known inverted lists and multidimensional indexing approaches. A theoretical analysis of our generalized technique shows that both, inverted lists and multidimensional indexing approaches, are far from being optimal. A consequence of our analysis is that the use of a set of multidimensional indexes provides considerable improvements over one d-dimensional index (multidimensional indexing) or d one-dimensional indexes (inverted lists). The basic idea of tree striping is to use the optimal number k of lower dimensional indexes determined by our theoretical analysis for efficient query processing. We confirm our theoretical results by an experimental evaluation on large amounts of real and synthetic data. The results show a speed-up of up to 310% over the multidimensional indexing approach and a speed-up factor of up to 123 (12,300%) over the inverted-lists approach.

Keywords

Query Processing Cost Model Index Structure Data Space Range Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berchtold S., Keim D., Kriegel H.-P.: ‘The X-tree: An Index Structure for High-Dimensional Data’, 22nd Conf. on Very Large Databases, 1996, Bombay, India.Google Scholar
  2. 2.
    Beckmann N., Kriegel H.-P., Schneider R., Seeger B.: ‘The R *-tree: An Efficient and Robust Access Method for Points and Rectangles’, Proc. ACM SIGMOD Int. Conf. on Management of Data, Atlantic City, NJ, 1990, pp. 322–331.Google Scholar
  3. 3.
    Faloutsos C., Barber R., Flickner M., Hafner J., et al.: ‘Efficient and Effective Querying by Image Content’, Journal of Intelligent Information Systems, 1994, Vol. 3, pp. 231–262.CrossRefGoogle Scholar
  4. 4.
    Bayer R., McCreight E.M.: ‘Organization and Maintenance of Large Ordered Indices’, Acta informatica, Vol. 1, No. 3, 1972, pp. 173–189.CrossRefGoogle Scholar
  5. 5.
    Freeston M.: ‘The BANG file: A new kind of grid file’, Proc. ACM SIGMOD Int. Conf. on Management of Data, San Francisco, CA, 1987, pp. 260–269.Google Scholar
  6. 6.
    Gargantini I.: ‘An Effective Way to Represent Quadtrees’, Comm. of the ACM, Vol. 25, No. 12, 1982, pp. 905–910.zbMATHCrossRefGoogle Scholar
  7. 7.
    Guttman A.: ‘R-trees: A Dynamic Index Structure for Spatial Searching’, Proc. ACM SIGMOD Int. Conf. on Management of Data, Boston, MA, 1984, pp. 47–57.Google Scholar
  8. 8.
    Jagadish H.V.: ‘Linear Clustering of Objects with Multiple Attributes’, Proc. ACM SIGMOD Int. Conf. on Management of Data, Atlantic City, NJ, 1990, pp. 332–342.Google Scholar
  9. 9.
    Jagadish H.V.: ‘Spatial Search with Polyhedra’, Proc. 6th Int. Conf. on Data Engineering, Los Angeles, CA, 1990, pp. 311–319.Google Scholar
  10. 10.
    Kamel I., Faloutsos C.: ‘On Packing R-trees’, CIKM, 1993, pp. 490–499.Google Scholar
  11. 11.
    Kriegel H.-P.: ‘Performance Comparison of Index Structures for Multi-Key Retrieval’, Proc. ACM SIGMOD Int. Conf. on Management of Data, Boston, MA, 1984, pp. 186–196.Google Scholar
  12. 12.
    Lin K., Jagadish H. V., Faloutsos C.: ‘The TV-tree: An Index Structure for High-Dimensional Data’, VLDB Journal, Vol. 3, 1995, pp. 517–542.CrossRefGoogle Scholar
  13. 13.
    Nievergelt J., Hinterberger H., Sevcik K. C.: ‘The Grid File: An Adaptable, Symmetric Multikey File Structure’, ACM Trans. on Database Systems, Vol. 9, No. 1, 1984, pp. 38–71.CrossRefGoogle Scholar
  14. 14.
    Orenstein J.,: ‘A comparison of spatial query processing techniques for native and parameter spaces’, Proc. ACM SIGMOD Int. Conf. on Management of Data, 1990, pp. 326–336.Google Scholar
  15. 15.
    Pagel B.U., Six H.-W., Toben H., Widmayer P.: ‘Toward an Analysis of Range Query Performance in Spatial Data Structures’, Proc. ACM PODS, Symposium on Principa1s of Database Systems, 1993, pp. 214–221.Google Scholar
  16. 16.
    Seeger B., Kriegel H.-P.: ‘The Buddy Tree: An Efficient and Robust Access Method for Spatial Data Base Systems’, Proc. 16th Int. Conf. on Very Large Data Bases, Brisbane, Australia, 1990, pp. 590–601.Google Scholar
  17. 17.
    Sellis T., Roussopoulos N., Faloutsos C.: ‘The R+-Tree: A Dynamic Index for Multi-Dimensional Objects’, Proc. 13th Int. Conf. on Very Large Databases, Brighton, England, 1987, pp. 507–518.Google Scholar
  18. 18.
    Ullman J.D.: ‘Database and Knowledge-Base System’, Vol. II, Compute Science Press, Rockville, MD, 1989.Google Scholar
  19. 19.
    White, D., Jain R.: ‘Similarity Indexing with the SS-tree’, Proc. 12th Int. Conf. on Data Engineering, New Orleans, LA, 1996, pp. 516–523.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Stefan Berchtold
    • 1
  • Christian Böhm
    • 2
  • Daniel A. Keim
    • 3
  • Hans-Peter Kriegel
    • 2
  • Xiaowei Xu
    • 4
  1. 1.stb gmbhAugsburgGermany
  2. 2.University of MunichMunichGermany
  3. 3.University of Halle-WittenbergHalle (Saale)Germany
  4. 4.Siemens AG, Information and CommunicationsMunichGermany

Personalised recommendations