Strengthening McEliece Cryptosystem

  • Pierre Loidreau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1976)

Abstract

McEliece cryptosystem is a public-key cryptosystem based on error-correcting codes. It constitutes one of the few alternatives to cryptosystems relying on number theory. We present a modification of the McEliece cryptosystem which strengthens its security without increasing the size of the public key. We show that it is possible to use some properties of the automorphism groups of the codes to build decodable patterns of large weight errors. This greatly strengthens the system against the decoding attacks.

Keywords

Automorphism Group Irreducible Polynomial Original Parameter Goppa Code Frobenius Automorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [Can96]
    Anne Canteaut. Attaques de cryptosystémes á mots de poids faible et construction de fonctions t-résilientes. PhD thesis, Université Paris-VI, 1996.Google Scholar
  2. [CS98]
    A. Canteaut and N. Sendrier. Cryptanalysis of the original McEliece cryptosystem. In Kazuo Ohta and Dingyi Pei, eds., Advances in Cryptology-ASIACRYPT’98, number 1514 in LNCS, pages 187–199, 1998.CrossRefGoogle Scholar
  3. [Gib91]
    J. K. Gibson. Equivalent Goppa codes and trapdoors to McEliece’s publickey cryptosystem. In D. W. Davies, ed., Advances in Cryptology-EUROCRYPT’91, number 547 in LNCS, pages 517–521. Springer-Verlag,1991.Google Scholar
  4. [Gib95]
    J. K. Gibson. Severely Denting the Gabidulin Version of the McEliece Public Key Cryptosystem. Designs, Codes and Cryptography, 6:37–45, 1995.MATHCrossRefMathSciNetGoogle Scholar
  5. [Gop70]
    V. D. Goppa. A new class of linear error-correcting codes. Problemy Peredachi Informatsii, 6(3):207–212, 1970.MathSciNetGoogle Scholar
  6. [GPT91]
    E.M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov. Ideals over a non-commutative ring and their application in cryptology. LNCS, 573:482–489, 1991.Google Scholar
  7. [LDW94]
    Y. X. Li, R. H. Deng, and X. M. Wang. On the equivalence of McEliece’s and Niederreiter’s public-key cryptosystems. IEEE Transactions Information Theory, 40(1):271–273, 1994.MATHCrossRefMathSciNetGoogle Scholar
  8. [LS98]
    P. Loidreau and N. Sendrier. Some weak keys in McEliece public-key cryptosystem. In IEEE International Symposium on Information Theory, ISIT’98, Boston, page 382, 1998.Google Scholar
  9. [McE78]
    R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. Technical report, Jet Propulsion Lab. DSN Progress Report, 1978.Google Scholar
  10. [MS77]
    F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North Holland, 1977.Google Scholar
  11. [Nie86]
    H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory, 15(2):159–166, 1986.MATHMathSciNetGoogle Scholar
  12. [Pat75]
    N. J. Patterson. The algebraic decoding of Goppa codes. IEEE Transactions Information Theory, 21:203–207, 1975.MATHCrossRefMathSciNetGoogle Scholar
  13. [Sen98]
    N. Sendrier. On the concatenated structure of a linear code. AAECC, 9(3):221–242, 1998.MATHCrossRefMathSciNetGoogle Scholar
  14. [Sen99]
    Nicolas Sendrier. The Support Splitting Algorithm. Technical Report 3637, INRIA, March 1999. http://www.inria.fr/RRRT/RR-3637.html.
  15. [SS92]
    V. M. Sidel’nikov and S. O. Shestakov. On cryptosystems based on generalized Reed-Solomon codes. Discrete Mathematics, 4(3):57–63, 1992. in russian.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Pierre Loidreau
    • 1
  1. 1.Project CODESINRIA Rocquencourt Research UnitLe Chesnay - CedexFrance

Personalised recommendations