The Envelope of a Digital Curve Based on Dominant Points

  • David E. Singh
  • María J. Martín
  • Francisco F. Rivera
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1953)

Abstract

In this work, we present an optimal solution to the following problem: given a Freeman chain-code curve with n elements, and m points of it, find the minimum envelope of the curve by a set of line segments. This segments are obtained modifying the coordinates of these m points up to a distance h. The complexity of this algorithm is O(nh+mh 2), and it needs a storage of O(mh) data. In addition, we propose a greedy approximation algorithm that provides good results with lower complexity O(nh) in the worst case, and memory requirements O(h). A pre-processing with O(mn) is also needed for both algorithms. Some experimental results are shown.

Keywords

Tangency Point Greedy Heuristic Error Area Dominant Point Digital Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Aggarwal, J. Park: Notes on Searching in Multidimensional Monotone Arrays. Proc. 29th IEEE Symp. on Found. of Comp. Sci. (1988), 497–512 453Google Scholar
  2. 2.
    J. O’Rourke, A. Aggarwal, S. Maddial, M. Baldwin: An optimal algorithm for finding enclosing triangles. J. Algorithms, 7 (1986) 258–269 453MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Aggarwal, J. Chang, C. Yap: Minimum Area Circumscribing Polygons. Visual Computer, 1 (1985), 112–117 453MATHCrossRefGoogle Scholar
  4. 4.
    A. DePano, A. Aggarwal: Finding restricted k-envelopes for convex polygons. Proc. 22nd Allerton Conf. on Comm. Control and Computing, (1984) 81–90 453Google Scholar
  5. 5.
    DavidM. Mount, Ruth Silverman: Minimum enclosures with specified angles. Technical Report, CS-TR-3219 (1994) 453Google Scholar
  6. 6.
    J. G. Dunham: Optimum Uniform Piecewise Linear Approximation of Planar Curves. IEEE Trans. Pattern Anal. and Machine Intelligence, V. 8–1, (1986) 67–75 453CrossRefGoogle Scholar
  7. 7.
    Paul L. Rosin: Techniques for Assessing polygonal approximations of curves. IEEE Trans. on Pattern Anal. and Machine Intelligence, Vol 19, No 6 (1997) 659–666 453CrossRefGoogle Scholar
  8. 8.
    F. Attneave: Some informational aspects of visual perception. Psychol. Review. vol 61, no 3, (1954) 183–193 454CrossRefGoogle Scholar
  9. 9.
    Mohan S. Kankanhalli: An adaptive dominant point detection algorithm for digital curves. Pattern Recognition Letters. 14 (1993) 385–390 454MATHCrossRefGoogle Scholar
  10. 10.
    Cho-Huak Teh, Roland T. Chin: On the detection of dominant points. IEEE Trans. on Pattern Anal. and Machine Intelligence. Vol 11. No 8 (1989) 859–872 454CrossRefGoogle Scholar
  11. 11.
    Isabelle Debled-Rennesson, Jean-Pierre Reveillès: A linear algorithm for segmentation of digital curves. Int. J. of Pattern Recog. and Artificial Intelligence. 9–6 (1995) 454Google Scholar
  12. 12.
    David E. Singh, María J. Martín, Francisco F. Rivera: Propiedades geométricas en la obtención de la envolvente a una curva digital. Tech. report. (1999) 456, 457, 460, 461Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • David E. Singh
    • 1
  • María J. Martín
    • 2
  • Francisco F. Rivera
    • 1
  1. 1.Dept. of Electronics and Computer ScienceUniv. Santiago de CompostelaSpain
  2. 2.Dept. of Electronics and SystemsUniv. A. CoruñaSpain

Personalised recommendations