Computing 3D Medial Axis for Chamfer Distances

  • Eric Remy
  • Edouard Thiel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1953)

Abstract

Medial Axis, also known as Centres of Maximal Disks, is a representation of a shape, which is useful for image description and analysis. Chamfer or Weighted Distances, are discrete distances which allow to approximate the Euclidean Distance with integers. Computing medial axis with chamfer distances has been discussed in the literature for some simple cases, mainly in 2D. In this paper we give a method to compute the medial axis for any chamfer distance in 2D and 3D, by local tests using a lookup table. Our algorithm computes very efficiently the lookup tables and, very important, the neighbourhood to be tested.

Keywords

Medial axis Centres of Maximal Disks Chamfer Distances Lookup Table Transform Shape Representation 

References

  1. 1.
    C. Arcelli and G. Sanniti di Baja. Finding local maxima in a pseudo-euclidean distance transform. Computer Vision, Graphics and Image Processing, 43:361–367, 1988. 421CrossRefGoogle Scholar
  2. 2.
    G. Borgefors. Distance transformations in arbitrary dimensions. Computer Vision, Graphics and Image Processing, 27:321–345, 1984. 419CrossRefGoogle Scholar
  3. 3.
    G. Borgefors. Centres of maximal disks in the 5-7-11 distance transform. In 8th Scandinavian Conf. on Image Analysis, pages 105–111, Tromsø, Norway, 1993. 422Google Scholar
  4. 4.
    G. Borgefors, I. Ragnemalm, and G. Sanniti di Baja. The Euclidean Distance Transform: finding the local maxima and reconstructing the shape. In 7th Scandinavian Conf. on Image Analysis, volume 2, pages 974–981, Aalborg, Denmark, 1991. 422Google Scholar
  5. 5.
    G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford University Press, fifth edition, October 1978. §3.1. 420Google Scholar
  6. 6.
    M. Hujter and B. Vizvari. The exact solutions to the Frobenius problem with three variables. Ramanujan Math. Soc., 2(2):117–143, 1987. 421MATHMathSciNetGoogle Scholar
  7. 7.
    J. L. Mari and J. Sequeira. Using implicit surfaces to characterize shapes within digital volumes. In RECPAD’00, pages 285–289, Porto, Portugal, May 2000. 419Google Scholar
  8. 8.
    E. Remy and E. Thiel. Optimizing 3D chamfer masks with distance constraints. In 7th IWCIA, Int. Workshop on Combinatorial Image Analysis, pages 39–56, Caen, July 2000. 419, 420, 423, 424, 427Google Scholar
  9. 9.
    E. Remy and E. Thiel. Structures dans les sph`eres de chanfrein. In 12ème RFIA, congrès Reconnaissance des Formes et I.A, volume 1, pages 483–492, Paris, Fev 2000. 420, 424Google Scholar
  10. 10.
    A. Rosenfeld and J. L. Pfaltz. Sequential operations in digital picture processing. Journal of ACM, 13(4):471–494, 1966. 420, 421MATHCrossRefGoogle Scholar
  11. 11.
    J. Sylvester. Mathematicals questions with their solutions. Educational Times, 41:21, 1884. 421Google Scholar
  12. 12.
    E. Thiel. Les distances de chanfrein en analyse d’images: fondements et applications. PhD thesis, UJF, Grenoble, Sept 1994. http://www.lim.univ-mrs.fr/~thiel/these. 419, 421, 422, 427
  13. 13.
    J. H. Verwer. Distance transforms: metrics, algorithms and applications. PhD thesis, Technische Universiteit, Delft, 1991. 419, 425Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Eric Remy
    • 1
  • Edouard Thiel
    • 1
  1. 1.Laboratoire d’Informatique de Marseille LIMMarseille Cedex 9France

Personalised recommendations