Advertisement

Encoding Temporal Logics in Executable Z: A Case Study for the ZETA System

  • Wolfgang Grieskamp
  • Markus Lepper
Conference paper
Part of the Lecture Notes in Artificial Intelligence book series (LNCS, volume 1955)

Abstract

The ZETA system is a Z-based tool environment for developing formal specifications. It contains a component for executing the Z language based on the implementation technique of concurrent constraint resolution. In this paper, we present a case-study for the environment, by providing an executable encoding of temporal interval logics in the Z language. As an application of this setting, test-case evaluation of traceproducing systems on the base of a formal requirements specifications is envisaged.

Keywords

Temporal Logic Logic Programming State Predicate Temporal Formula Free Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Boley. A Tight, Practical Integration of Relations and Functions, volume 1712 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1999.Google Scholar
  2. 2.
    R. Büssow and W. Grieskamp. Combinig Z and temporal interval logics for the formalization of properties and behaviors of embedded systems. In R. K. Shyamasundar and K. Ueda, editors, Advances in Computing Science-Asian’ 97, volume 1345 of LNCS, pages 46–56. Springer-Verlag, 1997. 46CrossRefGoogle Scholar
  3. 3.
    R. Büssow and W. Grieskamp. A Modular Framework for the Integration of Heterogenous Notations and Tools. In K. Araki, A. Galloway, and K. Taguchi, editors, Proc. of the 1st Intl. Conference on Integrated Formal Methods-IFM’99. Springer-Verlag, London, June 1999. 43Google Scholar
  4. 4.
    Z. Chaochen, C. A. R. Hoare, and A. Ravn. A calculus of durations. Information Processing Letters, 40(5), 1991. 46Google Scholar
  5. 5.
    W. Grieskamp. A Set-Based Calculus and its Implementation. PhD thesis, Technische Universität Berlin, 1999. 44Google Scholar
  6. 6.
    W. Grieskamp. A Computation Model for Z based on Concurrent Constraint Resolution. to appear in ZUM’00, January 2000. 43, 44Google Scholar
  7. 7.
    M. Hanus. Curry-an integrated functional logic language. Technical report, Internet, 1999. Language report version 0.5. 52Google Scholar
  8. 8.
    X. Jia. An approach to animating Z specifications. Internet: http://saturn.cs.depaul.edu/~fm/zans.html, 1996. 52
  9. 9.
    B._Moszkowski. Executing Temporal Logic Programs. Cambridge University Press, 1986. updated version from the authors home page. 43, 46Google Scholar
  10. 10.
    G. Nadathur and D. Miller. An overview of λProlog. In Proc. 5th Conference on Logic Programming & 5th Symposium on Logic Programming (Seattle). MIT Press, 1988.Google Scholar
  11. 11.
    G. Smolka. Concurrent constraint programming based on functional programming. In C. Hankin, editor, Programming Languages and Systems, Lecture Notes in Computer Science, vol. 1381, pages 1–11, Lisbon, Portugal, 1998. Springer-Verlag. 52CrossRefGoogle Scholar
  12. 12.
    J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series in Computer Science, 2nd edition, 1992. 43, 44Google Scholar
  13. 13.
    S. Valentine. The programming language Z—. Information and Software Technology, 37(5-6):293–301, May-June 1995. 52CrossRefGoogle Scholar
  14. 14.
    M. M. West and B. M. Eaglestone. Software development: Two approaches to animation of Z specifications using Prolog. IEE/BCS Software Engineering Journal, 7(4):264–276, July 1992. 52CrossRefGoogle Scholar
  15. 15.
    M. Winiko., P. Dart, and E. Kazmierczak. Rapid prototyping using formal specifications. In Proceedings of the Australasian Computer Science Conference, 1998. 52Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Wolfgang Grieskamp
    • 1
  • Markus Lepper
    • 1
  1. 1.Institut für Kommunikations- und SoftwaretechnikTechnische Universität BerlinFB13Berlin

Personalised recommendations