Characterization of Rooms Searchable by Two Guards

  • Sang-Min Park
  • Jae-Ha Lee
  • Kyung-Yong Chwa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1969)

Abstract

We consider the problem of searching for mobile intruders in a polygonal region with one door by two guards. Given a simple polygon P with one door d, which is called a room (P, d), two guards start at d and walk along the boundary of P to detect a mobile intruder with a laser beam between the two guards. During the walk, two guards are required to be mutually visible all the time and eventually meet at one point. We give the characterization of the class of rooms searchable by two guards, which naturally leads to O(n log n)-time algorithm for testing the searchability of an n-sided room.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Avis and G. T. Toussaint. An Optimal algorithm for determining the visibility of a polygon from an Edge, IEEE Transactions on Computers 30:910–914, 1981.CrossRefMathSciNetGoogle Scholar
  2. 2.
    D. Crass, I. Suzuki and M. Yamashita. Searching for a mobile intruder in a corridor — The open edge variant of the polygon search problem, International Journal of Computational Geometry an Applications, 5(4):397–412, 1995.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan. Linear-time algorithm for visibility and shortest path problems inside triangulated simple polygons. Algorithmica, 2:209–233, 1987.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    L. J. Guibas, J.-C. Latombe, S. M. Lavalle, D. Lin and R. Motwani. A visibility-based pursuit-evasion problem, International Journal of Computational Geometry an Applications, 9(4):471–493, 1999.CrossRefMathSciNetGoogle Scholar
  5. 5.
    P. J. Hedffernan. An optimal algorithm for the two-guard problem, International Journal of Computational Geometry an Applications, 6(1):15–44, 1996.CrossRefGoogle Scholar
  6. 6.
    C. Icking and R. Klein. The two guards problem, International Journal of Computational Geometry an Applications, 2(3):257–285, 1992.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    S. M. Lavalle, B. H. Simov, and G. Slutzki. An algorithm for searching a polygonal region with a flashlight. In Proceedings, ACM Symposium on Computational Geometry, pages 260–269, Hong Kong, June 2000.Google Scholar
  8. 8.
    J.-H. Lee, S.-M. Park and K.-Y. Chwa. Searching a polygonal room with one door by a 1-searcher, International Journal of Computational Geometry an Applications, 10(2):201–220, 2000.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J.-H. Lee, S. Y. Shin and K.-Y. Chwa. Visibility-based pursuit-evasion in a polygonal room with a door, In Proceedings, ACM Symposium on Computational Geometry, pages 281–290, FL, USA, June 1999.Google Scholar
  10. 10.
    G. Narashimhan. On hamiltonian triangulations in simple polygons, International Journal of Computational Geometry an Applications, 9(3):261–275, 1999.CrossRefGoogle Scholar
  11. 11.
    I. Suzuki and M. Yamashita. Searching for a mobile intruder in a polygonal region, SIAM Journal on Computing, 21(5):863–888, 1992.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    L. H. Tseng, P. Heffernan, and D. T. Lee. Two-guard walkability of simple polygons, International Journal of Computational Geometry an Applications, 8:85–116, 1998.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Sang-Min Park
    • 1
  • Jae-Ha Lee
    • 2
  • Kyung-Yong Chwa
    • 1
  1. 1.Department of Computer ScienceKorea Advanced Institute of Science & TechnologyKorea
  2. 2.Max-Planck-Institut für InformatikGermany

Personalised recommendations