Constructive Linear Time Algorithms for Small Cutwidth and Carving-Width

  • Dimitrios M. Thilikos
  • Maria J. Serna
  • Hans L. Bodlaender
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1969)


Consider the following problem: For any constant k and any input graph G, check whether there exists a tree T with internal vertices of degree 3 and a bijection x mapping the vertices of G to the leaves of T such that for any edge of T, the number of edges of G whose end- points have preimages in different components of T -e, is bounded by k. This problem is known as the Minimum Routing Tree Congestion problem and is relevant to the design of minimum congestion telephone networks. If, in the above definition, we consider lines instead of trees with internal vertices of degree 3 and bijections mapping the vertices of G to all the vertices of T, we have the well known Minimum Cut Linear Arrangement problem. Recent results of the Graph Minor series of Robertson and Seymour imply (non-constructively) that both these problems are fixed parameter tractable. In this paper we give a constructiveproof of this fact. Moreover, the algorithms of our proof are optimal and able to output the corresponding pair (T,x) in case of an affirmative answer.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. R. Abrahamson and M. R. Fellows. Finite automata, bounded treewidth and well-quasiordering. In N. Robertson and P. Seymour, editors, Proceedings of the AMS Summer Workshop on Graph Minors, Graph Structure Theory, Contemporary Mathematics vol. 147, pages 539–564. American Mathematical Society, 1993.Google Scholar
  2. 2.
    H. Bodlaender and T. Kloks. Efficient and constructive algorithms for the path-width and treewidth of graphs. J. Algorithms, 21:358–402, 1996.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    H. L. Bodlaender. Improved self-reduction algorithms for graphs with bounded treewidth. Disc. Appl. Math., 54:101–115, 1994.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing, 25:1305–1317, 1996.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    H. L. Bodlaender and D. M. Thilikos. Constructive linear time algorithms for branchwidth. In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proceedings 24th International Colloquium on Automata, Languages, and Programming, ICALP’97, pages 627–637. Springer-Verlag, Lecture Notes in Computer Science, Vol. 1256, 1997.Google Scholar
  6. 6.
    H. L. Bodlaender and D. M. Thilikos. Computing small search numbers in linear time. Technical Report Technical Report No. UU-CS-1998-05, Dept. of Computer Science, Utrecht University, 1998.Google Scholar
  7. 7.
    F. R. K. Chung. On the cutwidth and topological bandwidth of a tree. SIAM J. Alg. Disc. Meth., 6:268–277, 1985.MATHCrossRefGoogle Scholar
  8. 8.
    F. R. K. Chung and P. D. Seymour. Graphs with small bandwidth and cutwidth. Disc. Math., 75:113–119, 1989.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    G. Even, J. Naor, S. Rao, and B. Schieber. Divide-and-conquer approximation algorithms via spreading metrics. In Proc. 36th Symp. on Foundations of Computer Science (FOCS), pages 62–71, 1995.Google Scholar
  10. 10.
    M. R. Fellows and M. A. Langston. On well-partial-order theory and its application to combinatorial problems of VLSI design. SIAM J. Disc. Meth., 5:117–126, 1992.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    M. R. Fellows and M. A. Langston. On search, decision and the efficiency of polynomial-time algorithms. J. Comp. Syst. Sc., 49:769–779, 1994.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.MATHGoogle Scholar
  13. 13.
    S. Khuller, B. Raghavachari, and N. Young. Designing multi-commodity flow trees. Inform. Proc. Letters, 50:49–55, 1994.Google Scholar
  14. 14.
    E. Korach and N. Solel. Tree-width, path-width and cutwidth. Disc. Appl. Math., 43:97–101, 1993.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    F. S. Makedon, C. H. Papadimitriou, and I. H. Sudborough. Topological bandwidth. SIAM J. Alg. Disc. Meth., 6:418–444, 1985.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    F. S. Makedon and I. H. Sudborough. On minimizing width in linear layouts. Disc. Appl. Math., 23:243–265, 1989.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    B. Monien and I. H. Sudborough. Min cut is NP-complete for edge weighted trees. Theor. Comp. Sc., 58:209–229, 1988.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    N. Robertson and P. D. Seymour. Graph minors. XXIII. the Nash-Williams immersion conjecture. To appear.Google Scholar
  19. 19.
    N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem. J. Comb. Theory Series B, 63:65–110, 1995.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217–241, 1994.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    M. Yannakakis. A polynomial algorithm for the min-cut linear arrangement of trees. J. ACM, 32:950–988, 1985.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Dimitrios M. Thilikos
    • 1
  • Maria J. Serna
    • 1
  • Hans L. Bodlaender
    • 2
  1. 1.Departament de Llenguatges i Sistemes InformáticsUniversitat Politécnica de Catalunya Campus NordBarcelonaSpain
  2. 2.Department of Computer ScienceUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations