A Concurrent and Compositional Petri Net Semantics of Preemption

  • Hanna Klaudel
  • Franck Pommereau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1945)


The aim of this paper is the introduction of preemption in a compositional model, called M-nets, which is based on Petri nets and hence provided with a concurrent semantics. We propose a way to model preemptible systems by extending the M-net model with priorities and the M-net algebra with a preemption operator. We show that these extensions can be seen as a high-level version of the well studied model of priority systems, and so, can be reduced to Petri nets (without priori- ties) which retain as much as possible of the original concurrency. As a consequence, Petri nets appear as a model powerful enough to deal with preemption in a compositional way and with a concurrent semantics.


Petri nets Preemption Concurrency Compositionality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Berry. The Foundations of Esterel. Language and Interaction: Essays in Honour of Robin Milner, G. Plotkin, C. Stirling and M. Tofte, editors, MIT Press, 1998.Google Scholar
  2. 2.
    E. Best, R. Devillers, and J. Esparza. General refinement and recursion operators for the Petri box calculus. LNCS 665:130–140, 1993.Google Scholar
  3. 3.
    E. Best, R. Devillers, and J. G. Hall. The box calculus: a new causal algebra with multi-label communication. LNCS 609:21–69, 1992.Google Scholar
  4. 4.
    E. Best, W. Fraczak, R. Hopkins, H. Klaudel, and E. Pelz. M-nets: An algebra of high-level Petri nets, with an application to the semantics of concurrent programming languages. Acta Informatica, 35, 1998.Google Scholar
  5. 5.
    E. Best and R. P. Hopkins. B(PN)2 — A basic Petri net programming notation. PARLE’93, LNCS 694:379–390, 1993.Google Scholar
  6. 6.
    E. Best and M. Koutny. Petri net semantics of priority systems. Theoretical Computer Science, 96(1):175–215, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    E. Best and H. Wimmel. Reducing k-safe Petri nets to pomset-equivalent 1-safe Petri nets. ICATPN’2000, to appear.Google Scholar
  8. 8.
    R. Devillers, H. Klaudel, and R.-C Riemann. General refinement for high-level Petri nets. FST&TCS’97, LNCS 1346:297–311, 1997.Google Scholar
  9. 9.
    H. J. Genrich, K. Lautenbach, and P.S. Thiagarajan. Elements of General Net Theory. In W. Brauer, editor, Net Theory and Applications, Proceedings of the Advanced Course on General Net Theory of Processes and Systems, LNCS 84:21–163, 1980.Google Scholar
  10. 10.
    R. Devillers, H. Klaudel, and R.-C. Riemann. General parameterised refinement and recursion for the M-net calculus. Theoretical Computer Science, to appear.Google Scholar
  11. 11.
    J. Esparza. Model checking using net unfoldings. Science of Computer Programming, 23(2-3):151–195, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    H. Fleishhack and B. Grahlmann. A Petri net semantics for B(PN)2 with procedures. PDSE’97, Boston, 1997. IEEE Computer Society.Google Scholar
  13. 13.
    B. Grahlmann and E. Best. PEP-more than a Petri net tool. LNCS1055, 1996.Google Scholar
  14. 14.
    N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic Publishers, 1993.Google Scholar
  15. 15.
    H. Klaudel. Compositional high-level Petri net semantics of a parallel programming language with procedures. Science of Computer Programming, to appear.Google Scholar
  16. 16.
    H. Klaudel. Parametrized M-expression semantics of parallel procedures. DAP-SYS’00, to appear.Google Scholar
  17. 17.
    H. Klaudel and F. Pommereau. Asynchronous links in the PBC and M-nets. ASIAN’99, LNCS 1742:190–200, 1999.Google Scholar
  18. 18.
    H. Klaudel and R.-C. Riemann. High level expressions with their SOS semantics. CONCUR’97, LNCS 1243:288–301, 1997.Google Scholar
  19. 19.
    H. Klaudel and R.-C. Riemann. Refinement-based semantics od parallel procedures. PDPTA’99, volume 4. CSREA Press, 1999.Google Scholar
  20. 20.
    J. Lilius and E. Pelz. An M-net semantics of B(PN)2 with procedures. ISCIS, volume 1, 1996.Google Scholar
  21. 21.
    R. Milner. A calculus of communicating systems. LNCS 92, 1980.zbMATHGoogle Scholar
  22. 22.
    T. Vesper and M. Weber. Automatishes verteiltes rüchksetzen. In K. Spies and B. Schätz, editors, Proceedings of the workshop “Formale Beschreibungstechniken für verteilte Systeme”, number 9 in GI/ITG Fachgespräch, Munich, 1999.Google Scholar
  23. 23.
    M. Kishinevsky, J. Cortadella, A. Kondratyev, L. Lavagno, A. Taubin and A. Ya-kovlev. Coupling asynchrony and interrupts: place chart nets and their synthesis. ICATPN’97, LNCS1248:328–347, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Hanna Klaudel
    • 1
  • Franck Pommereau
    • 1
  1. 1.LACLUniversité Paris XIICréteilFrance

Personalised recommendations