An Introduction to Inductive Logic Programming and Learning Language in Logic

  • Sašo Džeroski
  • James Cussens
  • Suresh Manandhar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1925)


This chapter introduces Inductive Logic Programming (ILP) and Learning Language in Logic (LLL). No previous knowledge of logic programming, ILP or LLL is assumed. Elementarytopics are covered and more advanced topics are discussed. For example, in the ILP section we discuss subsumption, inverse resolution, least general generalisation, relative least general generalisation, inverse entailment, saturation, refinement and abduction. We conclude with an overview of this volume and pointers to future work.


Logic Program Natural Language Processing Inductive Logic Predicate Symbol Inductive Logic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adriaans, P. (1999). Learning Shallow Context-Free languages under simple distributions. CSLI-publications, University of Stanford.Google Scholar
  2. 2.
    Bordiga, A., Brachman, R., McGuiness, D., & Resnick, L. (1989). Classic: A structural data model for objects. In 1989 ACM SIGMOD International Conference on Management of Data, pp. 59–67.Google Scholar
  3. 3.
    Boström, H. (1998). Predicate invention and learning from positive examples only. In Proc. of the Tenth European Conference on Machine Learning, pp. 226–237. Springer Verlag.Google Scholar
  4. 4.
    Brachman, R. J., & Schmolze, J. G. (1985). An overview of the kl-one knowledge representation system. Cognitive Science, 9 (2), 171–216.CrossRefGoogle Scholar
  5. 5.
    Brill, E. (1995). Transformation-based error-driven learning and natural language processing: A case study in part of speech tagging. Computational Linguistics, 246–253.Google Scholar
  6. 6.
    Buntine, W. (1988). Generalized subsumption and its applications to induction and redundancy. Artificial Intelligence, 36 (2), 149–176.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Carpenter, B. (1992). The Logic of Typed Feature Structures. Cambridge University Press.Google Scholar
  8. 8.
    Cussens, J., & Pulman, S. (2000). Incorporating linguistics constraints into inductive logic programming. In Proc. of CoNLL-2000 and LLL-2000 Lisbon. Omni Press. To appear.Google Scholar
  9. 9.
    De Raedt, L., & Džeroski, S. (1994). First order jk-clausal theories are PAClearnable. Artificial Intelligence, 70, 375–392.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dehaspe, L., & Forrier, M. (1999). Transformation-based learning meets frequent pattern discovery. In Language Logic and Learning Workshop Bled, Slovenia.Google Scholar
  11. 11.
    Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA.zbMATHGoogle Scholar
  12. 12.
    Flach, P. (1992). Logical approaches to machine learning-an overview. THINK, 1 (2), 25–36.MathSciNetGoogle Scholar
  13. 13.
    Flach, P. A., & Kakas, A. C. (Eds.). (2000). Abduction and Induction: Essays on their Relation and Integration, Vol. 18 of Applied Logic Series. Kluwer, Dordrecht.Google Scholar
  14. 14.
    Hogger, C. (1990). Essentials of Logic Pogramming. Clarendon Press, Oxford.Google Scholar
  15. 15.
    Lloyd, J. (1987). Foundations of Logic Programming (2nd edition). Springer, Berlin.Google Scholar
  16. 16.
    Manandhar, S., Džeroski, S., & Erjavec, T. (1998). Learning multilingual morphology with CLOG. In Page, D. (Ed.), Inductive Logic Programming; 8th International Workshop ILP-98, Proceedings, No. 1446 in Lecture Notes in Artificial Intelligence, pp. 135–144. Springer.Google Scholar
  17. 17.
    McGregor, R. (1988). A deductive pattern matcher. In Proceedings of the Seventh National Conference on Artificial Intelligence (AAAI88), pp. 403–408 Menlo Park, CA.Google Scholar
  18. 18.
    Mooney, R. J., & Califf, M. E. (1995). Induction of first-order decision lists: Results on learning the past tense of English verbs. Journal of Artificial Intelligence Research, 3, 1–24.CrossRefGoogle Scholar
  19. 19.
    Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing Journal, 13, 245–286.Google Scholar
  20. 20.
    Muggleton, S. (2000). Learning from positive data. Machine Learning. Accepted subject to revision.Google Scholar
  21. 21.
    Muggleton, S. (1991). Inductive logic programming. New Generation Computing, 8 (4), 295–318.zbMATHCrossRefGoogle Scholar
  22. 22.
    Muggleton, S., & Bryant, C. (2000). Theory completion using inverse entailment. In Proc. of the 10th International Workshop on Inductive Logic Programming (ILP-00) Berlin. Springer-Verlag. In press.Google Scholar
  23. 23.
    Muggleton, S., & Buntine, W. (1988). Machine invention of first-order predicates by inverting resolution. In Proc. Fifth International Conference on Machine Learning, pp. 339–352 San Mateo, CA. Morgan Kaufmann.Google Scholar
  24. 24.
    Muggleton, S., & Feng, C. (1990). Efficient induction of logic programs. In Proc. First Conference on Algorithmic Learning Theory, pp. 368–381 Tokyo. Ohmsha.Google Scholar
  25. 25.
    Niblett, T. (1988). A study of generalisation in logic programs. In Proc. Third European Working Session on Learning, pp. 131–138 London. Pitman.Google Scholar
  26. 26.
    Pereira, F. (1981). Extraposition grammars. Computational Linguistics, 7, 243–256.Google Scholar
  27. 27.
    Pierce, C. (1958). Collected Papers of Charles Sanders Pierce. Harvard University Press. Edited by C. Hartsthorne, P. Weiss and A. Burks.Google Scholar
  28. 28.
    Plotkin, G. (1969). A note on inductive generalization. In Meltzer, B., & Michie, D. (Eds.), Machine Intelligence 5, pp. 153–163 Edinburgh. Edinburgh University Press.Google Scholar
  29. 29.
    Pollard, C., & Sag, I. A. (1987). Information-Based Syntax and Semantics: Volume 1 Fundamentals, Vol. 13 of Lecture Notes. Center for the Study of Language and Information, Stanford, CA.Google Scholar
  30. 30.
    Pollard, C., & Sag, I. A. (1994). Head-driven Phrase Structure Grammar. Chicago: University of Chicago Press and Stanford: CSLI Publications.Google Scholar
  31. 31.
    Quinlan, J. R. (1996). Learning first-order definitions of functions. Journal of Artificial Intelligence Research, 5, 139–161.zbMATHGoogle Scholar
  32. 32.
    Quinlan, J. (1990). Learning logical definitions from relations. Machine Learning, 5 (3), 239–266.Google Scholar
  33. 33.
    Robinson, J. (1965). A machine-oriented logic based on the resolution principle. Journal of the ACM, 12 (1), 23–41.zbMATHCrossRefGoogle Scholar
  34. 34.
    Rouveirol, C. (1990). Saturation: Postponing choices when inverting resolution. In Proceedings of the Ninth European Conference on Artificial Intelligence. Pitman.Google Scholar
  35. 35.
    Shapiro, E. (1983). Algorithmic Program Debugging. MIT Press, Cambridge, MA.Google Scholar
  36. 36.
    Smolka, G. (1992). Feature constraint logics for unification grammars. Journal of Logic Programming, 12, 51–87.zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Zelle, J. M., & Mooney, R. J. (1996). Learning to parse database queries using inductive logic programming. In Proceedings of the Thirteenth National Conference on Artificial Intelligence Portland, OR.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Sašo Džeroski
    • 1
  • James Cussens
    • 2
  • Suresh Manandhar
    • 2
  1. 1.Jožef Stefan InstituteLjubljanaSlovenia
  2. 2.Department of Computer ScienceUniversity of YorkHeslingtonUK

Personalised recommendations