Mining Ontologies from Text

  • Alexander Maedche
  • Steffen Staab
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1937)


Ontologies have become an important means for structuring knowledge and building knowledge-intensive systems. For this purpose, efforts have been made to facilitate the ontology engineering process, in particular the acquisition of ontologies from domain texts. We present a general architecture for discovering conceptual structures and engineering ontologies. Based on our generic architecture we describe a case study for mining ontologies from text using methods based on dictionaries and natural language text. The case study has been carried out in the telecommunications domain. Supporting the overall text ontology engineering process, our comprehensive approach combines dictionary parsing mechanisms for acquiring a domain-specific concept taxonomy with a discovery mechanism for the acquisition of non-taxonomic conceptual relations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Byrd and Y. Ravin. Identifying and extracting relations from text. In NLDB’99-4th International Conference on Applications of Natural Language to Information Systems, 1999.Google Scholar
  2. 2.
    S. Decker. On domain-specific declarative knowledge representation and database languages. In A. Borgida, V. Chaudri, and M. Staudt, editors, KRDB-98-Proceedings of the 5th Workshop Knowledge Representation meets DataBases, Seattle, WA, 31-May-1998, 1998.Google Scholar
  3. 3.
    D. Faure and C. Nedellec. A corpus-based conceptual clustering method for verb frames and ontology acquisition. In LREC workshop on adapting lexical and corpus resources to sublanguages and applications, Granada, Spain, 1998.Google Scholar
  4. 4.
    Christiane Fellbaum. WordNet-An electronic lexical database. MIT Press, Cambridge, Massachusetts and London, England, 1998.zbMATHGoogle Scholar
  5. 5.
    U. Hahn and K. Schnattinger. Towards text knowledge engineering. In Proc. of AAAI ’98, pages 129–144, 1998.Google Scholar
  6. 6.
    E. Hajicova. Linguistic meaning as related to syntax and to semantic interpretation. In M. Nagao, editor, Language and Artificial Intelligence. Proceedings of an International Symposium on Language and Artificial Intelligence, pages 327–351, Amsterdam, 1987. North-Holland.Google Scholar
  7. 7.
    B. Hamp and H. Feldweg. Germanet-a lexical-semantic net for german. In Proceedings of ACL workshop Automatic Information Extraction and Building of Lexical Semantic Resources for NLP Applications, Madrid., 1997.Google Scholar
  8. 8.
    M.A. Hearst. Automatic acquisition of hyponyms from large text corpora. In Proceedings of the 14th International Conference on Computational Linguistics. Nantes, France, 1992.Google Scholar
  9. 9.
    R. Hudson. English Word Grammar. Basil Blackwell, Oxford, 1990.Google Scholar
  10. 10.
    M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and framebased languages. Journal of the ACM, 42, 1995.Google Scholar
  11. 11.
    J. W. Lloyd and R. W. Topor. Making Prolog more expressive. Journal of Logic Programming, 1(3), 1984.Google Scholar
  12. 12.
    A. Maedche, H.-P. Schnurr, S. Staab, and R. Studer. Representation languageneutral modeling of ontologies. In Frank, editor, Proceedings of the German Workshop “Modellierung-2000”. Koblenz, Germany, April, 5–7, 2000. Fölbach-Verlag, 2000.Google Scholar
  13. 13.
    A. Maedche and S. Staab. Discovering conceptual relations from text. In Proceedings of ECAI-2000. IOS Press, Amsterdam, 2000.Google Scholar
  14. 14.
    E. Morin. Automatic acquisition of semantic relations between terms from technical corpora. In Proc. of the Fifth International Congress on Terminology and Knowledge Engineering-TKE’99, 1999.Google Scholar
  15. 15.
    G. Neumann, R. Backofen, J. Baur, M. Becker, and C. Braun. An information extraction core system for real world german text processing. In ANLP’97-Proceedings of the Conference on Applied Natural Language Processing, pages 208–215, Washington, USA, 1997.Google Scholar
  16. 16.
    P. Resnik. Selection and Information: A Class-based Approach to Lexical Relationships. PhD thesis, University of Pennsylania, 1993.Google Scholar
  17. 17.
    M. Romacker, M. Markert, and U. Hahn. Lean semantic interpretation. In Proc. of IJCAI-99, pages 868–875, 1999.Google Scholar
  18. 18.
    K. Sparck-Jones and P. Willett, editors. Readings in Information Retrieval. Morgan Kaufmann, 1997.Google Scholar
  19. 19.
    R. Srikant and R. Agrawal. Mining generalized association rules. In Proc. of VLDB ’95, pages 407–419, 1995.Google Scholar
  20. 20.
    S. Staab, J. Angele, S. Decker, M. Erdmann, A. Hotho, A. Maedche, H.-P. Schnurr, R. Studer, and Y. Sure. Semantic community web portals. In WWW9-Proceedings of the 9th International World Wide Web Conference, Amsterdam, The Netherlands, May, 15–19, 2000. Elsevier, 2000.Google Scholar
  21. 21.
    S. Staab, C. Braun, I. Bruder, A. Düsterhöft, A. Heuer, M. Klettke, G. Neumann, B. Prager, J. Pretzel, H.-P. Schnurr, R. Studer, H. Uszkoreit, and B. Wrenger. Getess-searching the web exploiting german texts. In CIA ’99-Proceedings of the 3rd international Workshop on Cooperating Information Agents. Upsala, Sweden, July 31–August 2, 1999, LNAI 1652, pages 113–124. Springer, 1999.Google Scholar
  22. 22.
    S. Staab and A. Maedche. Ontology engineering beyond the modeling of concepts and relations. In Proceedings of the ECAI’2000 Workshop on Application of Ontologies and Problem-Solving Methods, 2000.Google Scholar
  23. 23.
    G. Wiederhold and M. Genesereth. The conceptual basis for mediation services. IEEE Expert / Intelligent Systems, 12(5):38–47, September/October 1997.Google Scholar
  24. 24.
    P. Wiemer-Hastings, A. Graesser, and K. Wiemer-Hastings. Inferring the meaning of verbs from context. In Proceedings of the Twentieth Annual Conference of the Cognitive Science Society, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Alexander Maedche
    • 1
  • Steffen Staab
    • 1
  1. 1.AIFB, Univ. KarlsruheKarlsruheGermany

Personalised recommendations