Conflict Resolution in the Collaborative Design of Terminological Knowledge Bases

  • Gilles Falquet 
  • Claire-Lise Mottaz Jiang 
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1937)


Designing a terminological knowledge base consists in collecting terms and associating them to their definition. Our objective is to define a process model to support this design task in a collaborative work environment. The proposed concept model is based on terminological logic and the issue-based model IBIS. The terminological logic part is intended to formally express definitions and associate them to terms and points of view. The process model we define is based on a cyclic conflict resolution process. It includes a formal concept comparison operation, to highlight definition conflicts and their nature, and other operations (derivation, intersection, union, etc.) to solve the detected conflicts. The IBIS part of the model enable users to express and record issues, positions, arguments and endorsements that occur during conflict resolution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berthet D., Bonjour M., De Bessé B., Falquet G., Léonard M, Sinayamaze J., ConcepTerm “Construction de dictionnaires encyclopédiques multilingues et informatisés”, CUI technical report, University of Geneva, 1994Google Scholar
  2. 2.
    Brachman, R., McGuinness, D., Patel-Schneider, P., Borgida, A. and Resnick, L. Living with CLASSIC: When and How to Use a KL-ONE-Like Language, in Principles of Semantic Networks. Morgan Kaufman. Pp. 401–456. May, 1991.Google Scholar
  3. 3.
    Buckingham Shum S., Representing Hard-to-Formalise, Contextualised, Multidisciplinary, Organisational Knowledge, in AIKM’97 ProceedingsGoogle Scholar
  4. 4.
    Buchheit M., Donini F. M., Schaerf A., Decidable Reasoning in Terminological Knowledge Representation Systems, Journal of Artificial Intelligence Research, 1993Google Scholar
  5. 5.
    Conklin J., Begeman M., gIBIS: A Tool for All Reasons, Journal of the American Society for Information Science, 40, pp 200–213, 1989CrossRefGoogle Scholar
  6. 6.
    Conklin J., Designing Organizational Memory: Preserving Intellectual Assets in a Knowledge Economy, Group Decision Support Systems, 1996Google Scholar
  7. 7.
    De Bessé B., Pulitano D., BD-TERM, un logiciel de gestion terminologique, ETI, Université de Genéve,1989Google Scholar
  8. 8.
    Dieng R., Comparison of Conceptual Graphs for Modelling Knowledge of Multiple Experts: Application to Traffic Accident Analysis, Rapport de Recherche n°3161, INRIA Sophia Antipolis, Projet Acacia, 1997Google Scholar
  9. 9.
    Euzenat J., Corporate memory through cooperative creation of knowledge bases and hyper-documents, in Proceedings of the Tenth Knowledge Acquisition for Knowledge-Based Systems Workshop (KAW ’96)Google Scholar
  10. 10.
    Falquet G., Sindayamaze J., Bonjour M., Leonard M., F2Concept, un modéle intègrant la description de la compréhension et l’extension des classes d’objets, CUI, Université de Genève, 1991Google Scholar
  11. 11.
    Falquet G. Mottaz C.-L., A Model for the Collaborative Design of Multi-Point-of-View Terminological Knowledge Bases, Proceedings of the Knowledge Management and Organizational Memory workshop of the International Joint Conference on Artificial Intelligence, Stockholm, 1999Google Scholar
  12. 13.
    Kuntz W., Rittel H., Issues as elements of information systems, Working Paper No 131, Institute of Urban and Regional Development, University of California at Berkeley, 1972Google Scholar
  13. 14.
    Mariño Drew O., Raisonnement classificatoire dans une représentation à objets multi-points de vue, thése de doctorat, Université Joseph Fourier, Grenoble, 1993Google Scholar
  14. 15.
    Pulitano D., Création d’une banque de terminologie à l’Ecole de traduction et d’interprétation de l’Université de Genève: BD-TERM, ETI, Université de Genève, 1988Google Scholar
  15. 16.
    Shaw M. L. G., Gaines B. R., Comparing Conceptual Structures; Consensus, Conflict, Correspondance and Contrast, Knowledge Science Institute, University of Calgary, 1989Google Scholar
  16. 17.
    Sindayamaze J., Prise en compte de la compréhension dans les bases de données, thèse de doctorat, Université de GenèveGoogle Scholar
  17. 18.
    Stumpf S, Argumentation-based Design Rationale-The Sharpest Tools in the box, Working Paper IN/98/01, University College LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Gilles Falquet 
    • 1
  • Claire-Lise Mottaz Jiang 
    • 1
  1. 1.Centre universitaire d’informatiqueUniversity of Geneva 1Genéve 4Switzerland

Personalised recommendations