A Survey of Data Mining Techniques

  • Victor Maojo
  • José Sanandrés
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1933)

Abstract

In this short paper we have resumed a keynote speech, to be given at the ISMDA 2000 conference, about data mining research and tools. We state a brief summary of the main concepts associated to data mining and some of the methods and tools used in the scientific world, mainly those that can associated to medical applications. Finally, some practical projects and conclusions are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Bibliography

  1. [1].
    Ivan Bratko and Stephen Muggleton. Applications of inductive logic programming. Communications of the ACM, 38(11):65–70, November 1995.CrossRefGoogle Scholar
  2. [2].
    L. Breiman, J. Friedman, R. Olshen, and Stone C. Classification and Regression Trees. Wadsworth International Group, 1984.Google Scholar
  3. [3].
    Carla E. Brodley. Recursive automatic bias selection for classifier construction. Machine Learning, 20:63–94, 1995.Google Scholar
  4. [4]
    P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements. In Y. Kodratoff, editor, Proceedings of the European Working Session on Learning: Machine Learning (EWSL-91), volume 482 of LNAI, pages 151–163, Porto, Portugal, March 1991. Springer Verlag.Google Scholar
  5. [5]
    Peter Clark and Tim Niblett. The CN2 induction algorithm. Machine Learning, 3:261, 1988.Google Scholar
  6. [6]
    Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. Advances in Knowledge Discovery and Data Mining, chapter From Data Mining to Knowledge Discovery: An Overview. The MIT Press, March 1996.Google Scholar
  7. [7]
    W.J. Frawley, G., Piatetsky-Shapiro, and C.J. Matheus. Knowledge discovery in databases: an overview. AI Magazine, 13(3):57–70, 1992.Google Scholar
  8. [8]
    Michael Goebel and Le Gruenwald. A survey of data mining and knowledge discovery software tools. In SIGKDD Explorations. ACM SIGKDD, June 1999.Google Scholar
  9. [9]
    John H. Holland. Escaping brittleness. In Proceedings Second International Workshop on Machine Learning, pages 92–95, 1983.Google Scholar
  10. [10].
    John H. Holland, J. Holyoak K, R. E. Nisbett, and P. R. Thagard. Induction: Processes of Inference, Learning, and Discovery. MIT Press, Cambridge, MA, 1987.Google Scholar
  11. [12].
    Pat Langley and H.A. Simon. Applications of machine learning and rule induction. Communications of the ACM, 38(11):55–64, Nov 1995.CrossRefGoogle Scholar
  12. [13].
    Nada Lavrac, Elpida Keravnou, and Blaz Zupan. Intelligent Data Analysis in Medicine and Pharmacology, chapter Intelligent Data Analysis in Medicine and Pharmacology: An Overview, pages 1–13. Kluwer, 1997.Google Scholar
  13. [14].
    T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. An empirical comparison of decision trees and other classification methods. Technical Report 979, Department of Statistics, University of Wisconsin-Madison, Madison, WI, June 30 1997.Google Scholar
  14. [15].
    W.J. Long, J.L. Griffith, H.P. Selker, and R.B D’Agostino. A comparison of logistic regression to decision-tree induction in a medical domain. Computers and Biomedical Research, 26:74–97, 1993.CrossRefGoogle Scholar
  15. [16].
    R. Michalski, I. Mozetic, J. Hong, and N. Lavrac. The AQ15 inductive learning system: an overview and experiments. In Proceedings of IMAL 1986, Orsay, 1986. Université de Paris-Sud.Google Scholar
  16. [17].
    R S Michalski. A theory and methodology of inductive learning. Artificial Intelligence, 20:111–161, 1983.CrossRefMathSciNetGoogle Scholar
  17. [18].
    Ryszard S. Michalski, Igor Mozetic, Jiarong Hong, and Nada Lavrac. The multi-purpose incremental learning system AQ15 and its testing application to three medical domains. In Proceedings of the 5th national conference on Artificial Intelligence, pages 1041–1045, Philadelphia, 1986.Google Scholar
  18. [19].
    J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA, 1992.Google Scholar
  19. [20]
    Weiss, S and Indurkhya:. Predictive Data Mining. A Practical Guide.Morgan Kaufmann. San Francisco, CA. 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Victor Maojo
    • 1
  • José Sanandrés
    • 1
  1. 1.Medical Informatics Group. Artificial Intelligence Laboratory. School of Computer ScienceUniversidad Politecnica of MadridMadridSpain

Personalised recommendations