Medical Expert Evaluation of Machine Learning Results for a Coronary Heart Disease Database

  • DaDragan Gamberger
  • Goran Krstačić
  • Tomislav Šmuc
Conference paper

DOI: 10.1007/3-540-39949-6_20

Part of the Lecture Notes in Computer Science book series (LNCS, volume 1933)
Cite this paper as:
Gamberger D., Krstačić G., Šmuc T. (2000) Medical Expert Evaluation of Machine Learning Results for a Coronary Heart Disease Database. In: Brause R.W., Hanisch E. (eds) Medical Data Analysis. ISMDA 2000. Lecture Notes in Computer Science, vol 1933. Springer, Berlin, Heidelberg

Abstract

A set of machine learning experiments was performed on the atherosclerotic coronary heart disease data collected in the regular med- ical practice, with intention to evaluate established medical diagnostic practice, investigate the relations between the results of less important diagnostic tests, and detect novel regularities in patients’ data. The re- sults of these experiments were evaluated by the medical expert for their soundness with respect to the existing knowledge in the domain, and potential for the generation of new and useful medical knowledge. The performed experiments generally verify the existing medical practice in non-invasive diagnosis of atherosclerotic coronary heart disease, but also demonstrate how the synergy of medical and machine learning expertise helps in the inference of a new knowledge and potentially could increase effciency and reliability of the medical diagnostic process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • DaDragan Gamberger
    • 1
  • Goran Krstačić
    • 2
  • Tomislav Šmuc
    • 1
  1. 1.Rudjer Bošković InstituteZagrebCroatia
  2. 2.Institute for Prevention of Cardiovascular Disease and RehabilitationZagrebCroatia

Personalised recommendations