Advertisement

Mechanical Properties of Carbon Nanotubes

  • Boris I. Yakobson
  • Phaedon Avouris
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 80)

Abstract

This paper presents an overview of the mechanical properties of carbon nanotubes, starting from the linear elastic parameters, nonlinear elastic instabilities and buckling, and the inelastic relaxation, yield strength and fracture mechanisms. A summary of experimental findings is followed by more detailed discussion of theoretical and computational models for the entire range of the deformation amplitudes. Non-covalent forces (supra-molecular interactions) between the nanotubes and with the substrates are also discussed, due to their significance in potential applications.

Keywords

Atomic Force Microscope Carbon Nanotubes Adhesion Energy Graphene Shell Single Graphene Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Adams, O. Sankey, J. Page, M. O’Keeffe, D. Drabold, Science 256, 1792 (1992)CrossRefGoogle Scholar
  2. 2.
    H. G. Allen, P. S. Bulson: Background to Buckling (McGraw-Hill, London 1980) p. 582Google Scholar
  3. 3.
    M. F. Ashby, Acta. Met. 37, 1273 (1989)CrossRefGoogle Scholar
  4. 4.
    Ph. Avouris, Hertel, T., Martel, R., Schmidt, T., Shea, H. R., Walkup, R. E., Appl. Surf. Sci. 141, 201 (1999)CrossRefGoogle Scholar
  5. 5.
    F. Banhart, P. M. Ajayan, Nature 382, 433 (1996)CrossRefGoogle Scholar
  6. 6.
    R. D. Beck, P. S. John, M. M. Alvarez, F. Diederich, R. L. Whetten, J. Phys. Chem. 95, 8402 (1991)CrossRefGoogle Scholar
  7. 7.
    X. Blase, A. Rubio, S. G. Louie, M. L. Cohen, Europhys. Lett. 28, 335 (1994)CrossRefGoogle Scholar
  8. 8.
    J. W. Bryson, S. F. Betz, H. S. Lu, D. J. Suich, H. X. Zhou, K. T. O’Neil, W. F. DeGrado, Science 270, 935 (1995)CrossRefGoogle Scholar
  9. 9.
    M. Buongiorno-Nardelli, B. I. Yakobson, J. Bernholc, Phys. Rev. Lett. 81, 4656 (1998)CrossRefGoogle Scholar
  10. 10.
    M. Buongiorno-Nardelli, B. I. Yakobson, J. Bernholc, Phys. Rev. B 57, 4277 (1998)CrossRefGoogle Scholar
  11. 11.
    J.-C. Charlier, T. W. Ebbesen, P. Lambin, Phys. Rev. B 53, 11108 (1996)CrossRefGoogle Scholar
  12. 12.
    L. Chico, V. H. Crespi, L. X. Benedict, S. G. Loui, M. L. Cohen, Phys. Rev. Lett. 76, 971 (1996)CrossRefGoogle Scholar
  13. 13.
    N. G. Chopra, L. X. Benedict, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl, Nature 377, 135 (1995)CrossRefGoogle Scholar
  14. 14.
    N. G. Chopra, A. Zettl, Solid State Commun. 105, 297 (1998)CrossRefGoogle Scholar
  15. 15.
    P. G. Collins, A. Zettl, H. Bando, A. Thess, R. E. Smalley, Science 278, 100 (1997)CrossRefGoogle Scholar
  16. 16.
    C. F. Cornwell, L. T. Wille, Solid State Commun. 101, 555 (1997)CrossRefGoogle Scholar
  17. 17.
    H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature 384, 147 (1996)CrossRefGoogle Scholar
  18. 18.
    P. Delaney, H. J. Choi, J. Ihm, S. G. Louie, M. L. Cohen, Nature (London), 391, 466 (1998)CrossRefGoogle Scholar
  19. 19.
    J. F. Despres, E. Daguerre, K. Lafdi, Carbon 33, 87 (1995)CrossRefGoogle Scholar
  20. 20.
    M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego 1996) p. 965Google Scholar
  21. 21.
    M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg, Graphite Fibers and Filaments (Springer, Berlin, Heidelberg 1988) p. 382Google Scholar
  22. 22.
    T. W. Ebbesen, H. Hiura, Adv. Mater. 7, 582 (1995)CrossRefGoogle Scholar
  23. 23.
    M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks, S. Washburn, R. Superfine, Nature 389, 582 (1997)CrossRefGoogle Scholar
  24. 24.
    M. S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y.-G. Yoon, M. S. C. Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, P. L. McEuen, Science, 288, 494 (2000)CrossRefGoogle Scholar
  25. 25.
    A. Garg, J. Han, S. B. Sinnott, Phys. Rev. Lett. 81, 2260 (1998)CrossRefGoogle Scholar
  26. 26.
    A. Garg, S. B. Sinnott, Phys. Rev. B 60, 13786 (1999)CrossRefGoogle Scholar
  27. 27.
    R. C. Haddon, Science 261, 1545 (1993)CrossRefGoogle Scholar
  28. 28.
    E. Hernández, C. Goze, P. Bernier A. Rubio, Phys. Rev. Lett. 80, 4502 (1998)CrossRefGoogle Scholar
  29. 29.
    E. Hernández, C. Goze, P. Bernier, A. Rubio, Appl. Phys. A 68, 287 (1999)CrossRefGoogle Scholar
  30. 30.
    T. Hertel, R. Martel, Ph. Avouris, J. Phys. Chem. B 102, 910 (1998)CrossRefGoogle Scholar
  31. 31.
    T. Hertel, R. E. Walkup, Ph. Avouris, Phys. Rev. B 58, 13870 (1998)CrossRefGoogle Scholar
  32. 32.
    J. P. Hirth, J. Lothe, Theory of Dislocations (Wiley, New York 1982) p. 857Google Scholar
  33. 33.
    H. Hiura, T. W. Ebbesen, J. Fujita, K. Tanigaki, T. Takada, Nature 367, 148 (1994)CrossRefGoogle Scholar
  34. 34.
    S. Iijima, C. Brabec, A. Maiti, J. Bernholc, J. Chem. Phys. 104, 2089 (1996)CrossRefGoogle Scholar
  35. 35.
    C. L. Kane, E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997)CrossRefGoogle Scholar
  36. 36.
    B. T. Kelly, Physics of Graphite (Applied Science Publishers, London 1981) p. 478Google Scholar
  37. 37.
    V. V. Kozey, H. Jiang, V. R. Mehta, S. Kumar, J. Mater. Res. 10, 1044 (1995)CrossRefGoogle Scholar
  38. 38.
    A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yanilos, M. M. J. Treacy, Phys. Rev. B 58, 14013 (1998)CrossRefGoogle Scholar
  39. 39.
    L. D. Landau, E. M. Lifshitz: Theory of Elasticity (Pergamon, Oxford 1986)Google Scholar
  40. 40.
    J. Liu, H. Dai, J. H. Hafner, D. T. Colbert, R. E. Smalley, S. J. Tans, C. Dekker, Nature (London) 385, 780 (1997)CrossRefGoogle Scholar
  41. 41.
    O. Lourie, D. M. Cox, H. D. Wagner, Phys. Rev. Lett. 81, 1638 (1998)CrossRefGoogle Scholar
  42. 42.
    J. P. Lu, Phys. Rev. Lett. 79, 1297 (1997)CrossRefGoogle Scholar
  43. 43.
    R. Martel, T. Schmidt, H. R: Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998)CrossRefGoogle Scholar
  44. 44.
    R. Martel, H. R. Shea, Ph. Avouris, Nature (London) 398, 582 (1999)CrossRefGoogle Scholar
  45. 45.
    R. Martel, H. R. Shea, Ph. Avouris, J. Phys. Chem. B 103, 7551 (1999)CrossRefGoogle Scholar
  46. 46.
    Y. Miyamoto, A. Rubio, S. G. Louie, M. L. Cohen, Phys. Rev. B 50, 4976 (1994)CrossRefGoogle Scholar
  47. 47.
    Y. Miyamoto, A. Rubio, S. G. Louie, M. L. Cohen, Phys. Rev. B 50, 18360 (1994)CrossRefGoogle Scholar
  48. 48.
    J. Muster, M. Burghard, S. Roth, G. S. Dusberg, E. Hernandez, A. Rubio, J. Vac. Sci. Technol. 16, 2796 (1998)CrossRefGoogle Scholar
  49. 49.
    G. Overney, W. Zhong, D. Tománek, Z. Phys. D 27, 93 (1993)CrossRefGoogle Scholar
  50. 50.
    A. C. Palmer, J. H. Martin, Nature 254, 46 (1975)CrossRefGoogle Scholar
  51. 51.
    D. Pierson, C. Richardson, B. I. Yakobson, 6th Foresight Conference on Molecular Nanotechnology, Santa Clara, CA, http:// www.foresight.org /Conferences (1998)
  52. 52.
    P. Poncharal, Z. L. Wang, D. Ugarte, W. A. de Heer, Science 283, 1513 (1999)CrossRefGoogle Scholar
  53. 53.
    A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tománek, P. Nordlander, D. T. Colbert, R. E. Smalley, Science 269, 1550 (1995)CrossRefGoogle Scholar
  54. 54.
    D. H. Robertson, D. W. Brenner, J. W. Mintmire, Phys. Rev. B 45, 12592 (1992)CrossRefGoogle Scholar
  55. 55.
    A. Rochefort, Ph. Avouris, F. Lesage, D. R. Salahub, Phys. Rev. B 60, 13824 (1999)CrossRefGoogle Scholar
  56. 56.
    A. Rubio, J. L. Corkill, M. L. Cohen, Phys. Rev. B 49, 5081 (1994)CrossRefGoogle Scholar
  57. 57.
    A. Rubio, Cond. Matter News 6, 6 (1997)Google Scholar
  58. 58.
    R. S. Ruoff, D. C. Lorents, Bull. APS 40, 173 (1995)Google Scholar
  59. 59.
    R. S. Ruoff, J. Tersoff, D. C. Lorents, S. Subramoney, B. Chan, Nature 364, 514 (1993)CrossRefGoogle Scholar
  60. 60.
    J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stöckli, N. A. Burnham, L. Forro, Phys. Rev. Lett. 82, 944 (1999)CrossRefGoogle Scholar
  61. 61.
    D. Sánchez-Portal, E. Artacho, J. M. Soler, A. Rubio, P. Ordejón, Phys. Rev. B 59, 12678 (1999)CrossRefGoogle Scholar
  62. 62.
    R. E. Smalley, B. I. Yakobson, Solid State Commun. 107, 597 (1998)CrossRefGoogle Scholar
  63. 63.
    D. Srivastava, M. Menon, K. Cho, Phys. Rev. Lett. 83, 2973 (1999)CrossRefGoogle Scholar
  64. 64.
    P. Stumm, R. S. Ruoff, B. I. Yakobson (unpublished, 2000)Google Scholar
  65. 65.
    B. G. Sumpter, D. W. Noid, J. Chem. Phys. 102, 6619 (1995)CrossRefGoogle Scholar
  66. 66.
    K. S. Suslick, (Ed.), Ultrasound: Its Chemical Physical and Biological Effects (VCH, Weinheim 1988)Google Scholar
  67. 67.
    M. Terrones, H. Terrones, Fullerene Sci. Technol. 4, 517 (1996)Google Scholar
  68. 68.
    J. Tersoff, R. S. Ruoff, Phys. Rev. Lett. 73, 676 (1994)CrossRefGoogle Scholar
  69. 69.
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, R. E. Smalley, Science 273, 483 (1996)CrossRefGoogle Scholar
  70. 70.
    S. P. Timoshenko, J. M. Gere, Theory of Elastic Stability (McGraw-Hill, New York 1998) p. 541Google Scholar
  71. 71.
    M. M. J. Treacy, Ebbesen, T. W., J. M. Gibson, Nature 381, 678 (1996)CrossRefGoogle Scholar
  72. 72.
    H. D. Wagner, O. Lourie, Y. Feldman, R. Tenne, Appl. Phys. Lett. 72, 188 (1998)CrossRefGoogle Scholar
  73. 73.
    D. A. Walters, Ericson, L. M., Casavant, M. J., Liu, J., Colbert, D. T., Smith, K. A., Smalley, R. E., Appl. Phys. Lett. 74, 3803 (1999)CrossRefGoogle Scholar
  74. 74.
    E. W. Wong, P. E. Sheehan, C. M. Lieber, Science 277, 1971 (1997)CrossRefGoogle Scholar
  75. 75.
    B. I. Yakobson, C. J. Brabec, J. Bernholc, Phys. Rev. Lett. 76, 2511 (1996)CrossRefGoogle Scholar
  76. 76.
    B. I. Yakobson, C. J. Brabec, J. Bernholc, J. Computer-Aided Materials Design 3, 173 (1996)CrossRefGoogle Scholar
  77. 77.
    B. I. Yakobson, M. P. Campbell, C. J. Brabec, J. Bernholc, Comput. Mater. Sci. 8, 341 (1997)CrossRefGoogle Scholar
  78. 78.
    B. I. Yakobson, R. E. Smalley, American Scientist 85, 324 (1997)Google Scholar
  79. 79.
    B. I. Yakobson, Fullerenes (Electrochem. Soc., Paris; ECS, Pennington 1997) p. 549Google Scholar
  80. 80.
    B. I. Yakobson, Physical Property Modification of Nanotubes, U. S. Patent Application 60/064,539 (1997)Google Scholar
  81. 81.
    B. I. Yakobson, Appl. Phys. Lett. 72, 918 (1998)CrossRefGoogle Scholar
  82. 82.
    B. I. Yakobson, G. Samsonidze, G. G. Samsonidze, Carbon 38, 1675 (2000)CrossRefGoogle Scholar
  83. 83.
    M. Yu, B. I. Yakobson, R. S. Ruoff, J. Phys. Chem. B Lett. 104, 8764 (2000)CrossRefGoogle Scholar
  84. 84.
    Yu, M., O. Lourie, M. Dyer, K. Moloni, T. Kelly, R. S. Ruoff, Science 287, 637 (2000)CrossRefGoogle Scholar
  85. 85.
    P. Zhang, P. E. Lammert, V. H. Crespi, Phys. Rev. Lett. 81, 5346 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Boris I. Yakobson
    • 1
  • Phaedon Avouris
    • 2
  1. 1.Center for Nanoscale Science and Technology and Department of Mechanical Engineering and Materials ScienceRice UniversityHoustonUSA
  2. 2.IBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations