Use of Elliptic Curves in Cryptography

  • Victor S. Miller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 218)

Abstract

We discuss the use of elliptic curves in cryptography. In particular, we propose an analogue of the Diffie-Hellmann key exchange protocol which appears to be immune from attacks of the style of Western, Miller, and Adleman. With the current bounds for infeasible attack, it appears to be about 20% faster than the Diffie-Hellmann scheme over GF(p). As computational power grows, this disparity should get rapidly bigger.

Bibliography

  1. [1]
    Lang, Serge, Elliptic Curves: Diophantine Analysis, Springer-Verlag New York, 1978.MATHGoogle Scholar
  2. [2]
    Lenstra, H. W., Letter to A. M. Odlyzko.Google Scholar
  3. [3]
    Diffie, W. and Hellman M., New Directions in Cryptography, IEEE Trans. Inform. Theory, IT-22 (1976), 644–654.CrossRefMathSciNetGoogle Scholar
  4. [4]
    Western, A. E., and Miller, J. C. P., Table of Indices and Primitive Roots, Royal Society Mathematical Tables, vol. 9, Cambridge Univ. Press, 1968.Google Scholar
  5. [5]
    Adleman, L., A subexponential algorithm for the discrete logarithm problem with applications to cryptography, Proc. 20th IEEE Found. Comp. Sci. Symp. (1979), 55–60.Google Scholar
  6. [6]
    Odlyzko, A. M., Discrete logarithms in finite fields and their cryptographic significance, preprint.Google Scholar
  7. [7]
    Silverman, J., Lower bound for the canonical height on elliptic curves, Duke Math. J. 48, 633–648 (1981).MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Laurent, M., Minoration de la hauteur de Neron-Tate, Seminaire de Theorie does Nombres, Paris 1981–82, 137–151, Birkhauser (1983).Google Scholar
  9. [9]
    Birch, B. J., Swinnerton-Dyer H.P.F., Notes on Elliptic Curves I, J. reine u. angewandte Math., 212, 7–25 (1963).MATHMathSciNetGoogle Scholar
  10. [10]
    Birch, B. J., Swinnerton-Dyer H.P.F., Notes on Elliptic Curves II, J. reine u. angewandte Math., 218, 79–108 (1965).MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Cassels, J. W. S., Diophantine Equations with special reference to elliptic curves, J. London Math. Soc., 41, 193–291 (1966).CrossRefMathSciNetGoogle Scholar
  12. [12]
    Mestre, J-F., Courbes elliptique et formule explicites, Seminaire de Theorie does Nombres, Paris 1981–82, 179–187, Birkhauser (1983).Google Scholar
  13. [13]
    Wiedemann, D., Solving sparse linear equations over finite fields, preprint.Google Scholar
  14. [14]
    Coppersmith, D., Odlyzko, A. M., and Schroeppel, R., Discrete logarithms in GF(p), IBM Research Report RC 10985 (1985).Google Scholar
  15. [15]
    Zimmer, H. G., On the difference of the Weil height and the Neron-Tate height, Math. Z. 147 (1976) 35–51.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Buhler, J., Gross, B., and Zagier, D., On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank 3, preprint.Google Scholar
  17. [17]
    Pohlig, S. and Hellman, M., An improved algorithm for computing logarithms over GF(p) and its cryptgraphic significance, IEEE Inform. Theory IT-24 (1978). 106–110.CrossRefMathSciNetGoogle Scholar
  18. [18]
    Pollard, J. M., Monte Carlo methods for index computation (mod p), Math. Comp. 32 (1978), 918–924.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Schoof, R., Elliptic Curves over finite fields and the computation of square roots mod p, Report 83-09, Math. Inst. Univ. v. Amsterdam (1983).Google Scholar
  20. [20]
    Fouvry, E., Theoreme de Brun-Titchmarsh; application au theoreme de Fermat, Invent. Math. 79 (1985), 383–407.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Bremner, A. and Cassels, J. W. S., On the Equation Y 2 = X(X 2 + p), Math. Comp. 42 (1984), 257–264.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Victor S. Miller
    • 1
  1. 1.Exploratory Computer ScienceIBM ResearchYorktown Heights

Personalised recommendations