Advertisement

Breaking Iterated Knapsacks

  • Ernest F. Brickell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 196)

Abstract

This paper presents an outline of an attack that we have used successfully to break iterated knapsacks. Although we do not provide a proof that the attack almost always works, we do provide some heuristic arguments. We also give a detailed description of the examples we have broken.

References

  1. 1.
    L. Adleman. “On Breaking the Iterated Merkle-Hellman Public Key Cryptosystem,” Advances in Cryptoloay, Proceedings of Crypto 82, Plenum Press 1983, 303–308.Google Scholar
  2. 2.
    E. P. Brickell. “Solving Low-Density Knapsacks,” to appear in Advances in Cryptology, Proceedings of Crypto 83, Plenun Press.Google Scholar
  3. 3.
    E. F. Brickell, J. C. Lagarias and A. M. Odlyzko, Evaluation of Adleman’s Attack on Multiply Iterated Knapsacks (Abstract), to appear in Advances in Cryptology, Proceedings of Crypto 83, Plenum Press.Google Scholar
  4. 4.
    E. F. Brickell and G. J. Simmons, “A Status Report on Knapsack Based Public Key Cryptosystems,” Congressus Numerantium 37 (1983). 3–72.MathSciNetGoogle Scholar
  5. 5.
    Y. Desmedt, J. Vandewalle, R. Govaerts, “A Critical Analysis of the Security of Knapsack Public Key Algorithms, preprint.Google Scholar
  6. 6.
    J. C. Lagarias, “Simultaneous Diophantine Approximation of Rationals by Rationals, preprint.Google Scholar
  7. 7.
    J. C. Lagarias, “Knapsack Public Key Cryptosystems and Diophantine Approximation,” to appear in Advances in Cryptology, Proceedings of Crypto 83, Plenum Press.Google Scholar
  8. 8.
    J. C. Lagarias and A. M. Odlyzko, “Solving Low-Density Subset Sum Problems, Proc. 24th Annual IEEE Symposium on Foundations of Computer Science (1983), 1–10.Google Scholar
  9. 9.
    A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz, “Factoring Polynomials with Rational Coefficients,” Math. Annalen, 261 (1982), 515–534.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    R. Merkle and M. Hellman, “Hiding Information and Signatures in Trapdoor Knapsacks,” IEEE Trans. Information Theory IT-24 (1978) 525–530.CrossRefGoogle Scholar
  11. 11.
    A. M. Odlyzko, “Cryptanalytic Attacks on the Multiplicative Knapsack Cryptosystem and on Shamir’s Fast Signature scheme,” preprint.Google Scholar
  12. 12.
    M. Petit, “Etude mathematique de certains systemes de cipherement: les sacs a dos,” doctor’s these, Universite de Rennes, France.Google Scholar
  13. 13.
    A. Shamir, “A Polynomial Time Algorithm for Breaking the Basic Merkle-Hellman Cryptosystem,” Proc. 23rd Annual Symposium on Foundations of Computer Science (1982), 145–152Google Scholar
  14. 14.
    A. Shamir, “The strongest knapsack-based cryptosystem,” presented at Crypto 82.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Ernest F. Brickell
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueNew Mexico

Personalised recommendations