Advertisement

Query Answering in Rough Knowledge Bases

  • Aida Vitória
  • Carlos Viegas Damásio
  • Jan Małuszyński
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2639)

Abstract

We propose a logic programming language which makes it possible to define and to reason about rough sets. In particular we show how to test for rough inclusion and rough equality. This extension to our previous work [7] is motivated by the need of these concepts in practical applications.

Keywords

Rough sets logic programming stable models uncertain reasoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Apt and R. Bol. Logic programming and negation: A survey. In Journal of Logic Programming, volume 19/20, pages 9–72. Elsevier, May/July 1994.Google Scholar
  2. 2.
    T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The KR system dlv: Progress report, comparisons and benchmarks. In A. G. Cohn, L. Schubert, and S. C. Shapiro, editors, KR’98: Principles of Knowledge Representation and Reasoning, pages 406–417, San Francisco, California, 1998. Morgan Kaufmann.Google Scholar
  3. 3.
    I. Niemelä and P. Simons. Efficient implementation of the well-founded and stable model semantics. In M. Maher, editor, Proc. of the Joint International Conference and Symposium on Logic Programming, pages 289–303, Bonn, Germany, 1996. MIT Press.Google Scholar
  4. 4.
    Z. Pawlak. Rough sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht, 1991.zbMATHGoogle Scholar
  5. 5.
    D. Pearce. Answer sets and constructive logic, II: Extended logic programs and related non-monotonic formalisms. In L. Pereira and A. Nerode, editors, Logic Programming and Nonmonotonic Reasoning — proceedings of the second international workshop, pages 457–475. MIT Press, 1993.Google Scholar
  6. 6.
    C. Sakama and K. Inoue. Paraconsistent Stable Semantics for Extended Disjunctive Programs. Journal of Logic and Computation, 5(3):265–285, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. Vitória and J. Małuszyński. A logic programming farmework for rough sets. In J. Alpigini, J. Peters, A. Skowron, and N. Zhong, editors, Proc. of the 3rd International Conference on Rough Sets and Current Trends in Computing, RSCTC’02, number 2475 in LNCS/LNAI, pages 205–212. Springer-Verlag, 2002.CrossRefGoogle Scholar
  8. 8.
    W. Ziarko and X. Fei. VPRSM approach to WEB searching. In J. Alpigini, J. Peters, A. Skowron, and N. Zhong, editors, Proc. of the 3rd International Conference on Rough Sets and Current Trends in Computing, RSCTC’02, number 2475 in LNCS/LNAI, pages 514–521. Springer-Verlag, 2002.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Aida Vitória
    • 1
  • Carlos Viegas Damásio
    • 2
  • Jan Małuszyński
    • 3
  1. 1.Dept. of Science and TechnologyLinköping UniversityNorrköpingSweden
  2. 2.Centro de Inteligência Artificial (CENTRIA), Dept. Informática, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  3. 3.Dept. of Computer and Information ScienceLinköping UniversityLinköpingSweden

Personalised recommendations