Solving Large Sparse Linear Systems Over Finite Fields

  • B. A. LaMacchia
  • A. M. Odlyzko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 537)

References

  1. [1]
    G. S. Ammar and W. G. Gragg, Superfast solution of real positive definite Toeplitz systems, SIAM J. Matrix Anal. Appl., 9 (1988), 61–76.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    R. R. Bitmead and B. D. O. Anderson, Asymptotically fast solution of Toeplitz and related systems of linear equations, Lin. Alg. Appl. 34 (1980), 103–116.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    I. F. Blake, R. Fuji-Hara, R. C. Mullin, and S. A. Vanstone, Computing logarithms in fields of characteristic two, SIAM J. Alg. Disc. Methods 5 (1984), 276–285.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun, Fast solution of Toeplitz systems of equations and computation of Padé approximants, J. Algorithms 1 (1980), 259–295.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    D. Coppersmith, Fast evaluation of discrete logarithms in fields of characteristic two, IEEE Trans. on Information Theory 30 (1984), 587–594.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    D. Coppersmith and J. H. Davenport, An application of factoring, J. Symbolic Computation 1 (1985), 241–243.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    D. Coppersmith, A. Odlyzko, and R. Schroeppel, Discrete logarithms in GF(p), Algorithmica 1 (1986), 1–15.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, Proc. 19th ACM Symp. Theory Comp. (1987), 1–6.Google Scholar
  9. [9]
    M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bureau of Standards 49 (1952), 409–436.MATHMathSciNetGoogle Scholar
  10. [10]
    B. A. LaMacchia and A. M. Odlyzko, Computation of discrete logarithms in prime fields, Designs, Codes, and Cryptography 1 (1991), to appear.Google Scholar
  11. [11]
    C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res. Nat. Bureau of Standards 49 (1952), 33–53.MathSciNetGoogle Scholar
  12. [12]
    A. K. Lenstra and M. S. Manasse, Factoring by electronic mail, Advances in Cryptology: Proceedings of Eurocrypt’ 89, J.-J. Quisquater, ed., to be published.Google Scholar
  13. [13]
    A. K. Lenstra and M. S. Manasse, Factoring with two large primes, Advances in Cryptology: Proceedings of Eurocrypt’ 90, I. Damgard, ed., to be published.Google Scholar
  14. [14]
    K. S. McCurley, The discrete logarithm problem, in Cryptography and Computational Number Theory, C. Pomerance, ed., Proc. Symp. Appl. Math., Amer. Math. Soc., 1990, to appear.Google Scholar
  15. [15]
    J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Information Theory IT-15 (1969), 122–127.CrossRefMathSciNetGoogle Scholar
  16. [16]
    W. H. Mills, Continued fractions and linear recurrences, Math. Comp. 29 (1975), 173–180.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    A. M. Odlyzko, Discrete logarithms in finite fields and their cryptographic significance, Advances in Cryptology: Proceedings of Eurocrypt’ 84, T. Beth, N. Cot, I. Ingemarsson, eds., Lecture Notes in Computer Science 209, Springer-Verlag, NY (1985), 224–314.Google Scholar
  18. [18]
    C. Pomerance, Analysis and comparison of some integer factoring algorithms, Computational Methods in Number Theory: Part I, H. W. Lenstra, Jr., and R. Tijdeman, eds., Math. Centre Tract 154 (1982), Math. Centre Amsterdam, 89–139.Google Scholar
  19. [19]
    C. Pomerance, Factoring, in Cryptography and Computational Number Theory, C. Pomerance, ed., Proc. Symp. Appl. Math., Amer. Math. Soc., 1990, to appear.Google Scholar
  20. [20]
    C. Pomerance and J. W. Smith, Reduction of large, sparse matrices over a finite field via created catastrophes, manuscript in preparation.Google Scholar
  21. [21]
    V. Strassen, Gaussian elimination is not optimal, Numerische Math. 13 (1969), 354–356.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    D. H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans. Information Theory IT-32 (1986), 54–62.CrossRefMathSciNetGoogle Scholar
  23. [23]
    J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford Univ. Press, 1965.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • B. A. LaMacchia
    • 1
  • A. M. Odlyzko
    • 1
  1. 1.AT&T Bell LaboratoriesMurray Hill

Personalised recommendations