Design of the ERATOSTHENES OLAP Server

  • Nikos Karayannidis
  • Aris Tsois
  • Panos Vassiliadis
  • Timos Sellis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2563)


On-Line Analytical Processing (OLAP) is a trend in database technology, based on the multidimensional view of data and is an indispensable component of the so-called business intelligence technology. The systems that realize this technology are called OLAP servers and are among the most high-priced products in software industry today [24]. The aim of this paper is twofold: (a) to describe the core levels of an OLAP system’s architecture and to present design choices and reasoning for each one of them,an d (b) to present the specific design decisions that we made for a prototype under development at NTUA, ERATOSTHENES. The paper describes in detail the most important decisions taken regarding the basic layers of the server component of ERATOSTHENES.


Range Query Dimension Table Fact Table Primary Path Data Chunk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P.A. Bernstein, M. L. Brodie, S. Ceri, D. J. DeWitt, M. J. Franklin, H. Garcia-Molina, J. Gray, G. Held, J. M. Hellerstein, H.V. Jagadish, M. Lesk, D. Maier, J. F. Naughton, H. Pirahesh, M. Stonebraker,and J. D. Ullman. The Asilomar Report on Database Research. ACM SIGMOD Record,27( 4):74–80, 1998. 34CrossRefGoogle Scholar
  2. [2]
    C.-Y. Chan and Y. Ioannidis. Hierarchical Cubes for Range-Sum Queries. In Proceedings 25th VLDB Conference, pages 675–686, September 1999. 37Google Scholar
  3. [3]
    S. Chaudhuri and U. Dayal. An overview of data warehousing and olap technology. ACM SIGMOD Record,26( 1):65–74, 1997. 41CrossRefGoogle Scholar
  4. [4]
    G. Colliat. OLAP relational and multidimensional database systems. ACM SIGMOD Record,25( 3):74–80, September 1996. 35CrossRefGoogle Scholar
  5. [5]
    P. Deshpande, K. Ramasamy, A. Shukla, and J. F. Naughton. Caching Multidimensional Queries Using Chunks. In Proceedings 1998 ACM SIGMOD Conference, pages 259–270, 1998. 37Google Scholar
  6. [6]
    R. J. Earle. Arbor software corporation u.s. patent #5359724, October 1994. 35
  7. [7]
    M. Gebhardt, M Jarke, and S. Jacobs. A Toolkit for Negotiation Support Interfaces to Multidimensional Data. In Proceedings 1997 ACM SIGMOD Conference, pages 348–356,1997. 34Google Scholar
  8. [8]
    G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys, 25( 2), 1993. 44Google Scholar
  9. [9]
    The Shore Project Group. The Shore Storage Manager Programming Interface, 1997. Available at: 36
  10. [10]
    D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi. Approximating multi-dimensional aggregate range queries over real attributes. In Proceedings 2000 ACM SIGMOD Conference, pages 463–474, 2000. 47Google Scholar
  11. [11]
    N. Karayannidis and T. Sellis. SISYPHUS: The Implementation of a Chunk-Based Storage Manager for OLAP Data Cubes. Data and Knowledege Engineering,2003. 36, 37, 40, 41, 42, 43, 47, 48Google Scholar
  12. [12]
    N. Karayannidis, A. Tsois, T. Sellis, R. Pieringer, V. Markl, F. Ramsak, R. Fenk, K. Elhardt, and R. Bayer. Star-Queries on Hierarchically-Clustered Fact-Tables. In Proceedings 28th VLDB Conference, August 2002. 37, 42, 48Google Scholar
  13. [13]
    D.A. Keim. Visual Data Mining. In Tutorials in 23rd VLDB Conference,1997. 34Google Scholar
  14. [14]
    R. Kimball. The Data Warehouse Toolkit. John Wiley & Sons, 1st edition,1996. 38Google Scholar
  15. [15]
    V. Markl, F. Ramsak, and R. Bayer. Improving OLAP Performance by Multidimensional Hierarchical Clustering. In Proceedings 1999 IDEAS Symposium, pages 165–177,1999. 37, 41, 43Google Scholar
  16. [16]
    Microsoft. OLEDB for OLAP, February 1998. Available at: 34
  17. [17]
    P. E. O’Neil and G. Graefe. Multi-table joins through bitmapped join indices. ACM SIGMOD Record, 24( 3): 8–11, 1995. 42CrossRefGoogle Scholar
  18. [18]
    V. Poosala and Y.E. Ioannidis. Selectivity estimation without the attribute value independence assumption. In Proceeding 23rd VLDB Conference, pages 486–495, 1997. 47Google Scholar
  19. [20]
    S. Sarawagi. Indexing olap data. IEEE Data Engineering Bulletin, 20( 1):36–43, 1997. 35Google Scholar
  20. [21]
    S. Sarawagi and M. Stonebraker. Efficient Organization of Large Multidimensional Arrays. In Proceedings 11th IEEE ICDE Conference, pages 328–336, 1994. 37, 41Google Scholar
  21. [22]
    D. Tsichritzis and A. Klug. The ANSI/X3/SPARC DBMS framework report of the study group on database management systems. Information Systems, 3( 3):173–191, 1978. 33CrossRefGoogle Scholar
  22. [23]
    A. Tsois, N. Karayannidis, T.K. Sellis, and D. Theodoratos. Cost-based optimization of aggregation star queries on hierarchically clustered data warehouses. In Proceedings 4th DMDW Workshop,2002. 46Google Scholar
  23. [24]
    P. Vassiliadis. Gulliver in the land of data warehousing: practical experiences and observations of a researcher. In Proceedings 2nd DMDW Workshop,2000. 32Google Scholar
  24. [25]
    J. S. Vitter, M. Wang, and B.R. Iyer. Data Cube Approximation and Histograms via Wavelets. In Proceedings 7th CIKM Conference, pages 96–104, 1998. 47Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Nikos Karayannidis
    • 1
  • Aris Tsois
    • 1
  • Panos Vassiliadis
    • 1
  • Timos Sellis
    • 1
  1. 1.Institute of Communication and Computer Systems and National Technical University of AthensAthensHellas

Personalised recommendations