Advertisement

The Ice Giant Systems of Uranus and Neptune

  • Heidi B. Hammel
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

The current state of knowledge of the Ice Giants, Uranus and Neptune, is presented. The changing appearance of the atmosphere of Uranus is discussed, and its current cloud patterns and zonal winds are reviewed. Highlights of recent uranian ring and satellite observations are presented, along with a brief discussion of the ionosphere as deduced from ground-based observations. For the Neptune system, the rapidly evolving atmosphere is assessed, with a discussion of the longterm record to put recent observations into context. Also discussed are advances in characterizing the clumpy ring system of Neptune. Remarkable changes in the atmosphere of Neptune’s moon Triton are described, and the ever-growing number of smaller satellites is reported. Concluding remarks include a synopsis of future exploration of these dynamic planetary systems.

Keywords

Zonal Wind Giant Planet Hubble Space Telescope Uranian System Voyager Spacecraft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, M., et al., 1991. Uranus atmospheric dynamics and circulation. In Uranus, eds. J.T. Bergstralh, E.D. Miner and M.S. Matthews, Univ. Arizona Press, Tucson, Arizona, pp. 253–295.Google Scholar
  2. Bézard, B., et al., 1999, Detection of the methyl radical on Neptune. Astrophys. J. 515, 868.CrossRefADSGoogle Scholar
  3. de Pater, I., et al., 2005a. The dynamic neptunian ring arcs: evidence for a gradual disappearance of Liberté and resonant jump of courage. Icarus 174, 263.CrossRefADSGoogle Scholar
  4. de Pater, I., Gibbard, S., & Hammel, H.B., 2005b. Evolution of the Dusty Ring System of Uranus. Icarus 180, 186.Google Scholar
  5. Dumas, C., et al., 2002. Astrometry and near-infrared photometry of Neptune’s inner satellites and ring arcs. Astrophys. J. 123, 1776.Google Scholar
  6. Elliot, J.L., et al., 1998. Global warming on Triton. Nature 393, 765.CrossRefADSGoogle Scholar
  7. Geballe, T.R., Jagod, M.F., & Oka, T., 1993. Detection of infrared emission lines in Saturn. Astrophys. J. 408, L109.CrossRefADSGoogle Scholar
  8. Gladman, B.J., et al., 1998. Discovery of two distant irregular moons of Uranus. Nature 392, 897.CrossRefADSGoogle Scholar
  9. Gladman, B.J., et al., 2000. The discovery of Uranus XIX, XX, and XXI. Icarus 147, 320.CrossRefADSGoogle Scholar
  10. Grundy, W.M., et al., 2003. Discovery of CO2 ice and leading-trailing spectral asymmetry on the uranian satellite Ariel. Icarus 162, 222.CrossRefADSGoogle Scholar
  11. Hammel, H.B., 1989. Neptune cloud structure at visible wavelengths. Science 244, 1165ADSCrossRefGoogle Scholar
  12. Hammel, H.B., & Lockwood, G. W., 2006. Atmospheric Variability on Uranus and Neptune: Seasonal, Solar-Driven, or Stochastic? Icarus, submitted.Google Scholar
  13. Hammel, H.B., et al., 1995. Hubble Space Telescope Imaging of Neptune’s Cloud Structure in 1994. Science 268, 1740.ADSCrossRefGoogle Scholar
  14. Hammel, H.B., et al., 2001. New measurements of the winds of Uranus. Icarus 153, 229.CrossRefADSGoogle Scholar
  15. Hammel, H.B., et al., 2005a. New Cloud Activity on Uranus in 2004: First Detection of a Southern Feature at 2.2 microns. Icarus 175, 284.CrossRefADSGoogle Scholar
  16. Hammel, H.B., et al., 2005b. Uranus in 2003: zonal winds, banded structure, and discrete features. Icarus 175, 534.CrossRefADSGoogle Scholar
  17. Hammel, H.B., et al., 2006. Mid-infrared ethane emission on Neptune and Uranus. Astrophys. J., submitted.Google Scholar
  18. Hansen, C.J., & Paige, D.A., 1992. A thermal model for the seasonal nitrogen cycle on Triton. Icarus 99, 273.CrossRefADSGoogle Scholar
  19. Hofstadter, M.D., Butler, B.J., & Gurwell, M.A., 2005. Imaging the troposphere of Uranus at millimeter and centimeter wavelengths. Bull. Amer. Astron. Soc. 37, 662.ADSGoogle Scholar
  20. Holman, M.J., et al., 2004. Discovery of five irregular moons of Neptune. Nature 430, 865.CrossRefADSGoogle Scholar
  21. Hunt, G., & Moore, P., 1989. Atlas of Uranus, Cambridge University Press. Karkoschka, E., 1998. Clouds of high contrast on Uranus. Science 280, 570.Google Scholar
  22. Kavelaars, J.J., et al., 2004. The discovery of faint irregular satellites of Uranus. Icarus 169, 474.CrossRefADSGoogle Scholar
  23. Lockwood, G.W., & Jerzykiewicz, M., 2006. Photometric Variability of Uranus and Neptune, 1950–2004. Icarus 180, 442.CrossRefADSGoogle Scholar
  24. Marten, A., et al., 2005. Improved constraints on Neptune’s atmosphere from submillimetrewavelength observations. Astron. & Astrophys. 429, 1097. Martin, D.W., McDaniel, E. W., & Meeka, M.L., 1961. On the possible occurrence of H3+ in interstellar space. Astrophys. J. 134, 1012.CrossRefADSGoogle Scholar
  25. Namouni, F., & Porco, C., 2002. The confinement of Neptune’s ring arcs by the moon Galatea. Nature 417, 45.CrossRefADSGoogle Scholar
  26. Prockter, L.M., Nimmo, F., & Pappalardo, R.T., 2005. A shear heating origin for ridges on Triton. Geophys. Res. Letters 32, L14202.CrossRefADSGoogle Scholar
  27. Rages, K.A., Hammel, H.B., & Friedson, A.J., 2004. Evidence for temporal change at Uranus’ South pole. Icarus 172, 548.CrossRefADSGoogle Scholar
  28. Sheppard, S.S., et al., 2005. An ultradeep survey for irregular satellites of Uranus: limits to completeness. Astron. J. 129, 518.CrossRefADSGoogle Scholar
  29. Showalter, M.R., Lissauer, J.J., & de Pater, I., 2005. The Rings of Neptune and Uranus in the Hubble Space Telescope. Bull. Amer. Astron. Soc. 37, 772.ADSGoogle Scholar
  30. Smith, B.A., et al., 1986. Voyager 2 in the Uranian system: imaging science results. Science 233, 43.ADSCrossRefGoogle Scholar
  31. Smith, B.A., et al., 1989. Voyager 2 at Neptune — imaging science results. Science 246, 1422.ADSCrossRefGoogle Scholar
  32. Spencer, J.R., & Moore, J.M., 1992. The influence of thermal inertia on temperatures and frost stability on Triton. Icarus 99, 261.CrossRefADSGoogle Scholar
  33. Sromovsky, L.A., et al., 2001. Coordinated 1996 HST and IRTF imaging of Neptune and Triton. III. Neptune’s atmospheric circulation and cloud structure. Icarus 149, 459.CrossRefADSGoogle Scholar
  34. Sromovsky, LA., et al., 2003. The nature of Neptune’s increasing brightness: evidence for a seasonal response. Icarus 163, 256.CrossRefADSGoogle Scholar
  35. Trafton, L.M., et al., 1993. Detection of H3+ from Uranus. Astrophys. J. 405, 761.CrossRefADSGoogle Scholar
  36. Trafton, L.M., et al., 1999. H2 quadrupole and H3+ emission from Uranus: the uranian thermosphere, ionosphere, and aurora. Astrophys. J. 524, 1059.CrossRefADSGoogle Scholar
  37. Trafton, L.M., & Miller, S., 2004. Images of Uranus’ H3u+ emission. Bull. Amer. Astron. Soc. 36, 1073.ADSGoogle Scholar

Copyright information

© Praxis Publishing Ltd 2006

Authors and Affiliations

  • Heidi B. Hammel
    • 1
  1. 1.Space Science InstituteBoulderUSA

Personalised recommendations