Upward Planarity Checking: “Faces Are More than Polygons”

Extended Abstract
  • Giuseppe Di Battista
  • Giuseppe Liotta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1547)

Abstract

In this paper we look at upward planarity from a new perspective. Namely, we study the problem of checking whether a given drawing is upward planar. Our checker exploits the relationships between topology and geometry of upward planar drawings to verify the upward planarity of a significant family of drawings. The checker is simple and optimal both in terms of efficiency and in terms of degree.

Keywords

Simple Polygon Complete Saturator External Face Distinct Edge Internal Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    P. Bertolazzi, G. D. Battista, and W. Didimo. Quasi upward planarity. Manuscript, 1998.Google Scholar
  2. [2]
    P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino. Upward drawings of triconnected digraphs. Algorithmica, 6(12):476–497, 1994.CrossRefGoogle Scholar
  3. [3]
    B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6:485–524, 1991.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    B. Chazelle and J. Incerpi. Triangulation and shape-complexity. ACM Trans. Graph., 3(2):135–152, 1984.MATHCrossRefGoogle Scholar
  5. [5]
    O. Devillers, G. Liotta, R. Tamassia, and F. Preparata. Cecking the convexity of polytopes and the planarity of subdivisions. In Algorithms and Data Structures (Proc. WADS 97), volume 1272 of Lecture Notes Comput. Sci., pages 186–199. Springer-Verlag, 1997.Google Scholar
  6. [6]
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an annotated bibliography. Comput. Geom. Theory Appl., 4:235–282, 1994.MATHGoogle Scholar
  7. [7]
    G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic digraphs. Theoret. Comput. Sci., 61:175–198, 1988.CrossRefMathSciNetMATHGoogle Scholar
  8. [8]
    H. ElGindy, D. Avis, and G. T. Toussaint. Applications of a two-dimensional hidden-line algorithm to other geometric problems. Computing, 31:191–202, 1983.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic variation analysis. Systematic Zoology, 18:259–278, 1969.CrossRefGoogle Scholar
  10. [10]
    M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan. Triangulating a simple polygon. Inform. Process. Lett., 7:175–179, 1978.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1972.CrossRefGoogle Scholar
  12. [12]
    S. Hertel and K. Mehlhorn. Fast triangulation of simple polygons. In Proc. 4th Internat. Conf. Found. Comput. Theory, volume 158 of Lecture Notes Comput. Sci., pages 207–218. Springer-Verlag, 1983.Google Scholar
  13. [13]
    D. Kelly. Fundamentals of planar ordered sets. Discrete Math., 63:197–216, 1987.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    G. Liotta, F. P. Preparata, and R. Tamassia. Robust proximity queries: an illustration of degree-driven algorithm design. SIAM J. Comput. to appear.Google Scholar
  15. [15]
    G. Liotta, F. P. Preparata, and R. Tamassia. Robust proximity queries: an illustration of degree-driven algorithm design. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 156–165, 1997.Google Scholar
  16. [16]
    K. Mehlhorn and S. Näher. Checking Geometric Structures, Dec. 1996. Manual.Google Scholar
  17. [17]
    K. Mehlhorn, S. Näher, T. Schilz, S. Schirra, M. Seel, R. Seidel, and C. Uhrig. Checking geometric programs or verification of geometric structures. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 159–165, 1996.Google Scholar
  18. [18]
    K. Mehlhorn, S. Näher, T. Schilz, S. Schirra, M. Seel, R. Seidel, and C. Uhrig. Checking geometric programs or verification of geometric structures. Manuscript, 1997.Google Scholar
  19. [19]
    F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985.Google Scholar
  20. [20]
    G. Toussaint. Efficient triangulation of simple polygons. Visual Comput., 7:280–295, 1991.CrossRefGoogle Scholar
  21. [21]
    G. T. Toussaint. The relative neighbourhood graph of a finite planar set. Pattern Recogn., 12:261–268, 1980.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Giuseppe Di Battista
    • 1
  • Giuseppe Liotta
    • 2
  1. 1.Dipartimento di Informatica e AutomazioneUniversità di Roma TreRomaItaly
  2. 2.Dipartimento di Informatica e SistemisticaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations