Drawing of Two-Dimensional Irregular Meshes

  • Alok Aggarwal
  • S. Rao Kosaraju
  • Mihai Pop
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1547)

Abstract

We present a method for transforming two-dimensional irregular meshes into square meshes with only a constant blow up in area. We also explore context invariant transformations of irregular meshes into square meshes and provide a lower bound for the transformation of down-staircases.

References

  1. [1]
    G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an annotated bibliography, June 1994. electronically available at ftp://wilma.cs.brown.edu/pub/papers/compgeo/gdbiblio.ps.gz.
  2. [2]
    T. Chan, M. T. Goodrich, S. R. Kosaraju, and R. Tamassia. Optimizing area and aspect ratio in straight-line orthogonal tree drawings. In Proceedings of the Symmposium on Graph Drawing, GD’96, pages 63–75. Springer Verlag, September 1996.Google Scholar
  3. [3]
    P. Eades, A. Symvonis, and S. Whitesides. Two algorithms for three dimensional orthogonal graph drawing. In Proceedings of the Symmposium on Graph Drawing, GD’96, pages 139–154. Springer Verlag, September 1996.Google Scholar
  4. [4]
    A. Fiat and A. Shamir. Polymorphic arrays: A novel VLSI layout for systolic computers. In 25th Annual Symposium on Foundations of Computer Science, pages 37–45, Los Angeles, Ca., USA, October 1984. IEEE Computer Society Press.Google Scholar
  5. [5]
    A. Garg, M. T. Goodrich, and R. Tamassia. Planar upward tree drawings with optimal area. International Journal of Computational Geometry and Applications, 6(3):333–356, 1996.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    C. E. Leiserson. Area-efficient graph layouts (for VLSI). In 21st Annual Symposium on Foundations of Computer Science, pages 270–281, Syracuse, New York, 13–15 October 1980. IEEE.Google Scholar
  7. [7]
    A. Papakostas, J. M. Six, and I. G. Tollis. Experimental and theoretical results in interactive orthogonal graph drawing. In Proceedings of the Symmposium on Graph Drawing, GD’96, pages 371–386. Springer Verlag, September 1996.Google Scholar
  8. [8]
    A. Papakostas and I. G. Tollis. A pairing technique for area-efficient orthogonal drawings. In Proceedings of the Symmposium on Graph Drawing, GD’96, pages 355–370. Springer Verlag, September 1996.Google Scholar
  9. [9]
    J. D. Ullman. Computational Aspects of VLSI. Computer Science Press, Maryland, 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Alok Aggarwal
    • 1
  • S. Rao Kosaraju
    • 2
  • Mihai Pop
    • 2
  1. 1.IBM Research Division; Solutions Research CenterIndian Institute of TechnologyNew Delhi
  2. 2.Department of Computer ScienceJohns Hopkins UniversityBaltimore

Personalised recommendations