Field Ionization and Field Desorption

  • Jürgen H. Gross
Chapter

Abstract

The first observation of the desorption of positive ions from surfaces by high electrostatic fields was made by means of a field ion microscope. [1, 2] The mass spectrometric analysis of some field-ionized gases followed. [2–4] However, it was Beckey putting forth the development of a focusing field ionization ion source. [5] In these early experiments electric field strengths of about 108 V cm-1 (1 VÅ-1) were generated at sharp tungsten tips. [2, 4, 5] The method of field ionization (FI) was soon extended to analyze volatile liquids [6–11] and solids introduced by evaporation from a sample vial in close proximity to the ionizing tip or wire electrode. [12]. FI, still immature in the mid-1960s, had soon to compete with chemical ionization (CI, Chap. 7). [13] The major breakthrough came from its further development to field desorption (FD), because FD circumvents the evaporation of the analyte prior to ionization. [14, 15] Instead, the processes of ionization and subsequent desorption of the ions formed are united on the surface of the field emitter. The specific charm of FI-MS and of FD-MS in particular arises from their extraordinary softness of ionization yielding solely intact molecular ions in most cases, and from the capability of FD to handle neutral as well as ionic analytes. [16–25] FD-MS had its flourishing period from the mid-1970s to the mid-1980s and suffered from the advent of fast-atom bombardment (FAB) and later electrospray ionization (ESI) mass spectrometry. [21] However, it appears that the unique capabilities of FD-MS are currently being re-discovered. [26–29]

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference List

  1. 1.
    Müller, E.W. Feldemission. Ergebnisse der exakten Naturwissenschaften 1953, 27, 290–360.CrossRefGoogle Scholar
  2. 2.
    Gomer, R.; Inghram, M.G. Applications of Field Ionization to Mass Spectrometry. J. Am. Chem. Soc. 1955, 77, 500.CrossRefGoogle Scholar
  3. 3.
    Inghram, M.G.; Gomer, R. Mass-Spectrometric Analysis of Ions From the Field Microscope. J. Chem. Phys. 1954, 22, 1279–1280.CrossRefGoogle Scholar
  4. 4.
    Inghram, M.G.; Gomer, R. Mass-Spectrometric Investigation of the Field Emission of Positive Ions. Z. Naturforsch. 1955, 10A, 863–872.Google Scholar
  5. 5.
    Beckey, H.D. Mass Spectrographic Investigations, Using a Field Emission Ion Source. Z Naturforsch. 1959, 14A, 712–721.Google Scholar
  6. 6.
    Beckey, H.D. Field-Ionization Mass Spectra of Organic Molecules. Normal C1 to C9 Paraffins. Z Naturforsch. 1962, 17A, 1103–1111.Google Scholar
  7. 7.
    Beckey, H.D. Molecule Dissociation by High Electric Fields. Z Naturforsch. 1963, 19A, 71–83.Google Scholar
  8. 8.
    Beckey, H.D. Mass Spectrometric Analysis with a New Source for the Production of Ion Fields at Thin Wires or Metal Edges. Fresenius Z. Anal. Chem. 1963, 797, 80–90.CrossRefGoogle Scholar
  9. 9.
    Beckey, H.D.; Wagner, G. Analytical Use of an Ion Field Mass Spectrometer. Fresenius Z. Anal. Chem. 1963, 797, 58–80.CrossRefGoogle Scholar
  10. 10.
    Beckey, H.D.; Schulze, P. Field Ionization Mass Spectra of Organic Molecules. III. n-Paraffins Up to C16 and Branched Paraffins. Z. Naturforsch. 1965, 20A, 1329–1335.Google Scholar
  11. 11.
    Beckey, H.D.; Wagner, G. Field Ionization Mass Spectra of Organic Molecules. II. Amines. Z Naturforsch. 1965, 20A, 169–175.Google Scholar
  12. 12.
    Beckey, H.D. Analysis of Solid Organic Natural Products by Field Ionization Mass Spectrometry. Fresenius Z. Anal. Chem. 1965, 207, 99–104.CrossRefGoogle Scholar
  13. 13.
    Beckey, H.D. Comparison of Field Ionization and Chemical Ionization Mass Spectra of Decane Isomers.J.Am. Chem. Soc. 1966, 88, 5333–5335.CrossRefGoogle Scholar
  14. 14.
    Beckey, H.D. Field Desorption Mass Spectrometry: a Technique for the Study of Thermally Unstable Substances of Low Volatility. Int. J. Mass Spectrom. Ion Phys. 1969, 2, 500–503.CrossRefGoogle Scholar
  15. 15.
    Beckey, H.D.; Heindrichs, A.; Winkler, H.U. New Field Desorption Techniques. Int. J. Mass Spectrom. Ion Phys. 1970, 3, A9–A11.CrossRefGoogle Scholar
  16. 16.
    Beckey, H.D. Field-Ionization Mass Spectrometry; Pergamon: Elmsford, 1971.Google Scholar
  17. 17.
    Sammons, M.C.; Bursey, M.M.; White, CK. Field Desorption Mass Spectrometry of Onium Salts. Anal. Chem. 1975, 47, 1165–1166.CrossRefGoogle Scholar
  18. 18.
    Beckey, H.D. Principles of Field Desorption and Field Ionization Mass Spectrometry; Pergamon Press: Oxford, 1977.Google Scholar
  19. 19.
    Larsen, E.; Egsgaard, H.; Holmen, H. Field Desorption Mass Spectrometry of 1-Methylpyridinium Salts. Org. Mass Spectrom. 1978, 13, 417–424.CrossRefGoogle Scholar
  20. 20.
    Schulten, H.-R. Ion Formation From Organic Solids: Analytical Applications of Field Desorption Mass Spectrometry; Springer Series in Chemical Physics [25], Benninghoven, A., editor; Springer-Verlag: Heidelberg, 1983; pp. 14–29.CrossRefGoogle Scholar
  21. 21.
    Lattimer, R.P.; Schulten, H.-R. Field Ionization and Field Desorption Mass Spectrometry: Past, Present, and Future. Anal. Chem. 1989, 67, 1201A–1215A.Google Scholar
  22. 22.
    Beckey, H.D.; Schulten, H.-R. Field Desorption Mass Spectrometry. Angew. Chem. 1975, 87, 425–438.CrossRefGoogle Scholar
  23. 23.
    Lehmann, W.D.; Schulten, H.-R. Physikalische Methoden in der Chemie: Massenspektrometrie II. CI-, FI- und FD-MS. Chem. Unserer Zeit. 1976, 10, 163–174.CrossRefGoogle Scholar
  24. 24.
    Wood, G.W. Field Desorption Mass Spectrometry: Applications. Mass Spectrom. Rev. 1982, 7, 63–102.CrossRefGoogle Scholar
  25. 25.
    Olson, K.L.; Rinehart, K.L. Field Desorption, Field Ionization, and Chemical Ionization Mass Spectrometry. Methods Carbohyd. Chem. 1993, 9, 143–164.Google Scholar
  26. 26.
    Del Rio, J.C; Philp, R.P. Field Ionization Mass Spectrometric Study of High Molecular Weight Hydrocarbons in a Crude Oil and a Solid Bitumen. Org. Geochem. 1999, 30, 279–286.CrossRefGoogle Scholar
  27. 27.
    Guo, X.; Fokkens, R.H.; Peeters, H.J.W.; Nibbering, N.M.M.; de Koster, C.G. Multiple Cationization of Polyethylene Glycols in Field Desorption Mass Spectrometry: a New Approach to Extend the Mass Scale on Sector Mass Spectrometers. Rapid Commun. Mass Spectrom. 1999, 13, 2223–2226.CrossRefGoogle Scholar
  28. 28.
    Lattimer, R.P. Field Ionization (FI-MS) and Field Desorption (FD-MS), in Mass Spectrometry of Polymers, Montaudo, G.; Lattimer, R.P., editors; CRC Press: Boca Raton, 2001; pp. 237–268.Google Scholar
  29. 29.
    Schaub, T.M.; Hendrickson, C.L.; Qian, K.; Quinn, J.P.; Marshall, A.G. High-Resolution Field Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Analysis of Nonpolar Molecules. Anal. Chem. 2003, 75, 2172–2176.CrossRefGoogle Scholar
  30. 30.
    Gomer, R. Field Emission, Field Ionization, and Field Desorption. Surf. Sci. 1994, 299/300, 129–152.CrossRefGoogle Scholar
  31. 31.
    Prökai, L. Field Desorption Mass Spectrometry; Marcel Dekker: New York, 1990.Google Scholar
  32. 32.
    Todd, J.F.J. Recommendations for Nomenclature and Symbolism for Mass Spectroscopy Including an Appendix of Terms Used in Vacuum Technology. Int. J. Mass Spectrom. Ion. Proc. 1995, 142, 211–240.CrossRefGoogle Scholar
  33. 33.
    Ligon, W.V., Jr. Molecular Analysis by Mass Spectrometry. Science 1979, 205, 151–159.CrossRefGoogle Scholar
  34. 34.
    Schröder, E. Massenspektrometrie — Begriffe und Definitionen; Springer-Verlag: Heidelberg, 1991.CrossRefGoogle Scholar
  35. 35.
    Derrick, P.J.; Robertson, A.J.B. Field Ionization Mass Spectrometry With Conditioned Razor Blades. Int. J. Mass Spectrom. Ion Phys. 1973, 10, 315–321.CrossRefGoogle Scholar
  36. 36.
    Giessmann, U.; Heinen, HJ.; Röllgen, F.W. Field Desorption of Nonelectrolytes Using Simply Activated Wire Emitters. Org. Mass Spectrom. 1979, 14, 177–179.CrossRefGoogle Scholar
  37. 37.
    Heinen, H.J.; Giessmann, U.; Röllgen, F.W. Field Desorption of Electrolytic Solutions Using Untreated Wire Emitters. Org. Mass Spectrom. 1977, 72, 710–715.CrossRefGoogle Scholar
  38. 38.
    Beckey, H.D.; Krone, H.; Röllgen, F.W. Comparison of Tips, Thin Wires, and Sharp Metal Edges As Emitters for Field Ionization Mass Spectrometry. J. Sci. Instrum. 1968, 7, 118–120.Google Scholar
  39. 39.
    Beckey, H.D.; Hilt, E.; Schulten, H.-R. High Temperature Activation of Emitters for Field Ionization and Field Desorption Spectrometry. J. Phys. E: Sci. Instrum. 1973, 6, 1043–1044.CrossRefGoogle Scholar
  40. 40.
    Linden, H.B.; Hilt, E.; Beckey, H.D. High-Rate Growth of Dendrites on Thin Wire Anodes for Field Desorption Mass Spectrometry. J. Phys. E: Sci. Instrum. 1978, 11, 1033–1036.CrossRefGoogle Scholar
  41. 41.
    Rabrenovic, M.; Ast, T.; Kramer, V. Alternative Organic Substances for Generation of Carbon Emitters for Field Desorption Mass Spectrometry. Int. J. Mass Spectrom. Ion Phys. 1981, 37, 297–307.CrossRefGoogle Scholar
  42. 42.
    Okuyama, F.; Hilt, E.; Röllgen, F.W.; Beckey, H.D. Enhancement of Field Ionization Efficiency of 10-μm Tungsten Filaments Caused by the Nucleation of Carbide Particles. J. Vac. Sci. Technol. 1977, 74, 1033–1035.CrossRefGoogle Scholar
  43. 43.
    Linden, H.B.; Beckey, H.D.; Okuyama, F. On the Mechanism of Cathodic Growth of Tungsten Needles by Decomposition of Hexacarbonyltungsten Under High-Field Conditions. Appl. Phys. 1980, 22, 83–87.CrossRefGoogle Scholar
  44. 44.
    Bursey, M.M.; Rechsteiner, C.E.; Sammons, M.C.; Hinton, D.M.; Colpitts, T.; Tvaronas, K.M. Electrochemically Deposited Cobalt Emitters for Field Ionization and Field Desorption Mass Spectrometry. J. Phys. E: Sci. Instrum. 1976, 9, 145–147.CrossRefGoogle Scholar
  45. 45.
    Matsuo, T.; Matsuda, H.; Katakuse, I. Silicon Emitter for Field Desorption Mass Spectrometry. Anal. Chem. 1979, 57, 69–72.CrossRefGoogle Scholar
  46. 46.
    Okuyama, F.; Shen, G.-H. Ion Formation Mechanisms in Field-Desorption Mass Spectrometry of Semirefractory Metal Elements. Int. J. Mass Spectrom. Ion Phys. 1981, 39, 327–337.CrossRefGoogle Scholar
  47. 47.
    Rechsteiner, C.E., Jr.; Mathis, D.E.; Bursey, M.M.; Buck, R.P. A Novel Inexpensive Device for the Electrochemical Generation of Metallic Emitters for Field Desorption. Biomed. Mass Spectrom. 1977, 4, 52–54.CrossRefGoogle Scholar
  48. 48.
    Goldenfeld, I.V.; Veith, H.J. A New Emitter for Field-Desorption Mass Spectrometry with Silver-Electroplated Microneedles. Int. J. Mass Spectrom. Ion Phys. 1981, 40, 361–363.CrossRefGoogle Scholar
  49. 49.
    Kosevich, M.V.; Shelkovsky, V.S. A New Type of Graphite Emitter for Field Ionization/Field Desorption Mass Spectrometry. Rapid Commun. Mass Spectrom. 1993, 7, 805–811.CrossRefGoogle Scholar
  50. 50.
    Kiimmler, D.; Schulten, H.-R. Correlation Between Emitter Heating Current and Emitter Temperature in Field Desorption Mass Spectrometry. Org. Mass Spectrom. 1975, 70, 813–816.CrossRefGoogle Scholar
  51. 51.
    Winkler, H.U.; Linden, B. On the Determination of Desorption Temperatures in Field Desorption Mass Spectrometry. Org. Mass Spectrom. 1976, 77, 327–329.CrossRefGoogle Scholar
  52. 52.
    Schulten, H.-R.; Lehmann, W.D. High-Resolution Field Desorption Mass Spectrometry. Part VII. Explosives and Explosive Mixtures. Anal. Chim. Acta 1977, 93, 19–31.CrossRefGoogle Scholar
  53. 53.
    Schulten, H.-R.; Nibbering, N.M.M. An Emission-Controlled Field Desorption and Electron Impact Spectrometry Study of Some N-Substituted Propane and Butane Sultams. Biomed. Mass Spectrom. 1977, 4, 55–61.CrossRefGoogle Scholar
  54. 54.
    Schulten, H.-R. Recent Advances in Field Desorption Mass Spectrometry. Adv. Mass Spectrom. 1978, 7A, 83–97.Google Scholar
  55. 55.
    Linden, H. B. Germany DE 99–19963317, 2001, 4 pp.Google Scholar
  56. 56.
    Severin, D. Molecular Ion Mass Spectrometry for the Analysis of High- and Nonboiling Hydrocarbon Mixtures. Erdöl und Kohle — Erdgas — Petrochemie vereinigt mit Brennstoff-Chemie 1976, 29, 13–18.Google Scholar
  57. 57.
    Mead, L. Field Ionization Mass Spectrometry of Heavy Petroleum Fractions. Waxes. Anal. Chem. 1968, 40, 743–747.CrossRefGoogle Scholar
  58. 58.
    Scheppele, S.E.; Hsu, CS.; Marriott, T.D.; Benson, P.A.; Detwiler, K.N.; Perreira. N.B. Field-Ionization Relative Sensitivities for the Analysis of Saturated Hydrocarbons From Fossil-Energy-Related Materials. Int. J. Mass Spectrom. Ion Phys. 1978, 28, 335–346.CrossRefGoogle Scholar
  59. 59.
    Röllgen, F.W.; Beckey, H.D. Surface Reactions Induced by Field Ionization of Organic Molecules. Surf. Sci. 1970, 23, 69–87.CrossRefGoogle Scholar
  60. 60.
    Schulten, H.-R.; Beckey, H.D. Criteria for Distinguishing Between M+ and [M+H]+ Ions in Field Desorption Mass Spectra. Org. Mass Spectrom. 1974, 9, 1154–1155.CrossRefGoogle Scholar
  61. 61.
    Neumann, G.M.; Cullis, P.G.; Derrick, P.J. Mass Spectrometry of Polymers: Polypropylene Glycol. Z Naturforsch. 1980, 35A, 1090–1097.Google Scholar
  62. 62.
    McCrae, C.E.; Derrick, P.J. The Role of the Field in Field Desorption Fragmentation of Polyethylene Glycol. Org. Mass Spectrom. 1983, 18, 321–323.CrossRefGoogle Scholar
  63. 63.
    Heine, C.E.; Geddes, M.M. Field-Dependent [M-2H]+ Formation in the Field Desorption Mass Spectrometric Analysis of Hydrocarbon Samples. Org. Mass Spectrom. 1994, 29, 277–284.CrossRefGoogle Scholar
  64. 64.
    Klesper, G.; Röllgen, F.W. Field-Induced Ion Chemistry Leading to the Formation of [M-2nH]+ and [2M-2mH]+ Ions in Field Desorption Mass Spectrometry of Saturated Hydrocarbons. J. Mass Spectrom. 1996, 37, 383–388.CrossRefGoogle Scholar
  65. 65.
    Evans, W.J.; DeCoster, D.M.; Greaves, J. Field Desorption Mass Spectrometry Studies of the Samarium-Catalyzed Polymerization of Ethylene Under Hydrogen. Macromolecules 1995, 28, 7929–7936.CrossRefGoogle Scholar
  66. 66.
    Evans, W.J.; DeCoster, D.M.; Greaves, J. Evaluation of Field Desorption Mass Spectrometry for the Analysis of Polyethylene., J.Am. Soc. Mass Spectrom. 1996, 7, 1070–1074.CrossRefGoogle Scholar
  67. 67.
    Gross, J.H.; Weidner, S.M. Influence of Electric Field Strength and Emitter Temperature on Dehydrogenation and C-C Cleavage in Field Desorption Mass Spectrometry of Polyethylene Oligomers. Eur. J. Mass Spectrom. 2000, 6. 11–17.CrossRefGoogle Scholar
  68. 68.
    Gross, J.H.; Vékey, K.; Dallos, A. Field Desorption Mass Spectrometry of Large Multiply Branched Saturated Hydrocarbons. J. Mass Spectrom. 2001, 36, 522–528.CrossRefGoogle Scholar
  69. 69.
    Goldenfeld, I.V.; Korostyshevsky, I.Z.; Nazarenko, V.A. Multiple Field Ionization. Int. J. Mass Spectrom. Ion Phys. 1973, 11, 9–16.CrossRefGoogle Scholar
  70. 70.
    Helal, A.I.; Zahran, N.F. Field Ionization of Indene on Tungsten. Int. J. Mass Spectrom. Ion Proc. 1988, 85, 187–193.CrossRefGoogle Scholar
  71. 71.
    Röllgen, F.W.; Heinen, H.J. Formation of Multiply Charged Ions in a Field Ionization Mass Spectrometer. Int. J. Mass Spectrom. Ion Phys. 1975, 17, 92–95.CrossRefGoogle Scholar
  72. 72.
    Röllgen, F.W.; Heinen, H.J. Energetics of Formation of Doubly Charged Benzene Ions by Field Ionization. Z Naturforsch. 1975, 30A, 918–920.Google Scholar
  73. 73.
    Röllgen, F.W.; Heinen, HJ.; Levsen, K. Doubly-Charged Fragment Ions in the Field Ionization Mass Spectra of Alkylbenzenes. Org. Mass Spectrom. 1976, 11, 780–782.CrossRefGoogle Scholar
  74. 74.
    Kane-Maguire, L.A.P.; Kanitz, R.; Sheil, M.M. Comparison of Electrospray Mass Spectrometry With Other Soft Ionization Techniques for the Characterization of Cationic π-Hydrocarbon Organometallic Complexes. J. Organomet. Chem. 1995, 486, 243–248.CrossRefGoogle Scholar
  75. 75.
    Rogers, D.E.; Derrick, P.J. Mechanisms of Ion Formation in Field Desorption of Oligosaccharides. Org. Mass Spectrom. 1984, 79, 490–495.CrossRefGoogle Scholar
  76. 76.
    Derrick, P.J.; Nguyen, T.-T.; Rogers, D.E.C. Concerning the Mechanism of Ion Formation in Field Desorption. Org. Mass Spectrom. 1985, 77, 690.Google Scholar
  77. 77.
    Veith, HJ.; Röllgen, F.W. On the Ionization of Oligosaccharides. Org. Mass Spectrom. 1985, 77, 689–690.Google Scholar
  78. 78.
    Schulten, H.-R.; Beckey, H.D. Field Desorption Mass Spectrometry With High-Temperature Activated Emitters. Org. Mass Spectrom. 1972, 6, 885–895.CrossRefGoogle Scholar
  79. 79.
    Davis, S.C.; Neumann, G.M.; Derrick, P.J. Field Desorption Mass Spectrometry With Suppression of the High Field. Anal. Chem. 1987, 59, 1360–1362.CrossRefGoogle Scholar
  80. 80.
    Veith, H.J. Alkali Ion Addition in FD Mass Spectrometry. Cationization and Protonation-Ionization Methods in the Application of Nonactivated Emitters. Tetrahedron 1977, 33, 2825–2828.CrossRefGoogle Scholar
  81. 81.
    Giessmann, U.; Röllgen, F.W. Electrodynamic Effects in Field Desorption Mass Spectrometry. Int. J. Mass Spectrom. Ion Phys. 1981, 38, 267–279.CrossRefGoogle Scholar
  82. 82.
    Röllgen, F. W. Ion Formation From Organic Solids: Principles of Field Desorption Mass Spectrometry; Springer Series in Chemical Physics [25]; Benninghoven, A., editor; Springer-Verlag: Heidelberg, 1983; pp. 2–13.CrossRefGoogle Scholar
  83. 83.
    Wong, S.S.; Giessmann, U.; Karas, M.; Röllgen, F.W. Field Desorption of Sucrose Studied by Combined Optical Microscopy and Mass Spectrometry. Int. J. Mass Spectrom. Ion Proc. 1984, 56, 139–150.CrossRefGoogle Scholar
  84. 84.
    Derrick, P.J. Mass Spectroscopy at High Mass. Fresenius Z. Anal. Chem. 1986, 324, 486–491.CrossRefGoogle Scholar
  85. 85.
    Davis, S.C.; Natoli, V.; Neumann, G.M.; Derrick, PJ. A Model of Ion Evaporation Tested Through Field Desorption Experiments on Glucose Mixed With Alkali Metal Salts. Int. J. Mass Spectrom. Ion Proc. 1987, 78, 17–35.CrossRefGoogle Scholar
  86. 86.
    Reichert, H. Monodesoxygenierte Glucosid-Synthese und Kinetikstudien der enzymatischen Spaltung. Dissertation, Organisch-Chemisches Institut, Universität Heidelberg, 1997.Google Scholar
  87. 87.
    Veith, H.J. Field Desorption Mass Spectrometry of Quaternary Ammonium Salts: Cluster Ion Formation. Org. Mass Spectrom. 1976, 77, 629–633.CrossRefGoogle Scholar
  88. 88.
    Veith, H.J. Mass Spectrometry of Ammonium and Iminium Salts. Mass Spectrom. Rev. 1983, 2, 419–446.CrossRefGoogle Scholar
  89. 89.
    Veith, H.J. Collision-Induced Fragmentations of Field-Desorbed Cations. 4. Collision-Induced Fragmentations of Alkylideneammonium Ions. Angew. Chem. 1980, 92, 548–550.CrossRefGoogle Scholar
  90. 90.
    Fischer, M.; Veith, H.J. Collision-Induced Fragmentations of Field-Desorbed Cations. 5. Reactions of 2- and 3-Phenyl Substituted Alkylalkylidene Iminium Ions in the Gas Phase. Helv. Chim. Acta 1981, 64, 1083–1091.CrossRefGoogle Scholar
  91. 91.
    Miermans, C.J.H.; Fokkens, R.H.; Nibbering, N.M.M. A Study of the Applicability of Various Ionization Methods and Tandem Mass Spectrometry in the Analyses of Triphenyltin Compounds. Anal. Chim. Acta 1997, 340, 5–20.CrossRefGoogle Scholar
  92. 92.
    Röllgen, F.W.; Giessmann, U.; Heinen, H.J. Ion Formation in Field Desorption of Salts. Z. Naturforsch. 1976, 31A, 1729–1730.Google Scholar
  93. 93.
    Röllgen, F.W.; Ott, K.H. On the Formation of Cluster Ions and Molecular Ions in Field Desorption of Salts. Int. J. Mass Spectrom. Ion Phys. 1980, 32, 363–367.CrossRefGoogle Scholar
  94. 94.
    Lehmann, W.D.; Schulten, H.-R. Determination of Alkali Elements by Field Desorption Mass Spectrometry. Anal. Chem. 1977, 49, 1744–1746.CrossRefGoogle Scholar
  95. 95.
    Schulten, H.-R.; Bohl, B.; Bahr, U.; Mueller, R.; Palavinskas, R. Qualitative and Quantitative Trace-Metal Analysis in Physiological Fluids of Multiple Sclerosis Patients by Field Desorption Mass Spectrometer. Int. J. Mass Spectrom. Ion Phys. 1981, 58, 281–295.CrossRefGoogle Scholar
  96. 96.
    Keough, T.; DeStefano, A.J. Acid-Enhanced Field Desorption Mass Spectrometry of Zwitterions. Anal. Chem. 1981, 53, 25–29.CrossRefGoogle Scholar
  97. 97.
    Ott, K.H.; Röllgen, F.W.; Zwinselmann, J.J.; Fokkens, R.H.; Nibbering, N.M.M. Negative Ion Field Desorption Mass Spectra of Some Inorganic and Organic Compounds. Org. Mass Spectrom. 1980, 75, 419–422.CrossRefGoogle Scholar
  98. 98.
    Daehling, P.; Röllgen, F.W.; Zwinselmann, J.J.; Fokkens, R.H.; Nibbering, N.M.M. Negative Ion Field Desorption Mass Spectrometry of Anionic Surfactants. Fresenius Z. Anal. Chem. 1982, 312, 335–337.CrossRefGoogle Scholar
  99. 99.
    Mes, G.F.; Van der Greef, J.; Nibbering, N.M.M.; Ott, K.H.; Röllgen, F.W. The Formation of Negative Ions by Field Ionization. Int. J. Mass Spectrom. Ion Phys . 1980, 54, 295–301.CrossRefGoogle Scholar
  100. 100.
    Dähling, P.; Ott, K.H.; Röllgen, F.W.; Zwinselmann, J.J.; Fokkens, R.H.; Nibbering, N.M.M. Ionization by Proton Abstraction in Negative Ion Field Desorption Mass Spectrometry. Int. J. Mass Spectrom. Ion Phys. 1983, 46, 301–304.CrossRefGoogle Scholar
  101. 101.
    Frauenkron, M.; Berkessel, A.; Gross, J.H. Analysis of Ruthenium Carbonyl-Porphyrin Complexes: a Comparison of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight, Fast-Atom Bombardment and Field Desorption Mass Spectrometry. Eur. Mass. Spectrom. 1997, 3, 427–438.CrossRefGoogle Scholar
  102. 102.
    Lattimer, R.P.; Harmon, D.J.; Welch, K.R. Characterization of Low Molecular Weight Polymers by Liquid Chromatography and Field Desorption Mass Spectroscopy. Anal. Chem. 1979, 51, 293–296.CrossRefGoogle Scholar
  103. 103.
    Craig, A.C.; Cullis, P.G.; Derrick, P.J. Field Desorption of Polymers: Polybutadiene. Int. J. Mass Spectrom. Ion Phys. 1981, 38, 297–304.CrossRefGoogle Scholar
  104. 104.
    Lattimer, R.P.; Schulten, H.-R. Field Desorption of Hydrocarbon Polymers. Int. J. Mass Spectrom. Ion Phys. 1983, 52, 105–116.CrossRefGoogle Scholar
  105. 105.
    Matsuo, T.; Matsuda, H.; Katakuse, I. Use of Field Desorption Mass Spectra of Polystyrene and Polypropylene Glycol As Mass References Up to Mass 10000. Anal. Chem. 1979, 51, 1329–1331.CrossRefGoogle Scholar
  106. 106.
    Heinen, HJ.; Hötzel, C; Beckey, H.D. Combination of a Field Desorption Ion Source With a Quadrupole Mass Analyzer. Int. J. Mass Spectrom. Ion Phys. 1974, 13, 55–62.CrossRefGoogle Scholar
  107. 107.
    Gierlich, H.H.; Heinen, H.J.; Beckey, H.D. The Application of Quadrupole Mass Filters in Field Desorption Mass Spectrometry. Biomed. Mass Spectrom. 1975, 2, 31–35.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jürgen H. Gross
    • 1
  1. 1.Institute of Organic ChemistryUniversity of HeidelbergHeidelbergGermany

Personalised recommendations