Term Proximity Scoring for Keyword-Based Retrieval Systems

  • Yves Rasolofo
  • Jacques Savoy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2633)


This paper suggests the use of proximity measurement in combination with the Okapi probabilistic model. First, using the Okapi system, our investigation was carried out in a distributed retrieval framework to calculate the same relevance score as that achieved by a single centralized index. Second, by applying a term-proximity scoring heuristic to the top documents returned by a keyword-based system, our aim is to enhance retrieval performance. Our experiments were conducted using the TREC8, TREC9 and TREC10 test collections, and show that the suggested approach is stable and generally tends to improve retrieval effectiveness especially at the top documents retrieved.


Average Precision Retrieval Performance Term Pair Inverted File Document Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Allan, J., Ballesteros, L., Callan, J.P., Croft, W.B. and Lu, Z.: Recent experiments with INQUERY. In Proceedings of TREC-4, NIST Special Publication #500-236, 49–63, 1996.Google Scholar
  2. [2]
    Arampatzis, A., van der Weide, T., Koster, C. and van Bommel, P.: Linguistically motivated information retrieval. Encyclopedia of Library and Information Science, 39, 2000.Google Scholar
  3. [3]
    Buckley, C., Singhal, A., and Mitra, M.: Using query zoning and correlation within SMART: TREC-5. In Proceedings of TREC-5, NIST Special Publication #500-238, 105–118, 1997.Google Scholar
  4. [4]
    Carmel, D., Amitay, E., Herscovici, M., Maarek, Y., Petruschka, Y., and Soffer, A.: Juru at TREC-10: Experiments with index pruning. In Proceedings TREC-10, NIST Special Publication #500-250, 228–236, 2002.Google Scholar
  5. [5]
    Clarke, C.L.A., and Cormack, G.V. and Tudhope E. A.: Relevance Ranking for One to Three Term Queries. Information Processing and Management, 36(2):291–311, 2000.CrossRefGoogle Scholar
  6. [6]
    Craswell, N., Hawking, D., and Robertson, S.E.: Effective site finding using link anchor information. In Proceedings SIGIR-2001, ACM Press, 250–257, 2001.Google Scholar
  7. [7]
    Croft, W.B.: Combining approaches to information retrieval. In W.B. Croft (Ed.), Advances in information retrieval, Kluwer Academic Publishers, 1–36, 2000.Google Scholar
  8. [8]
    Dumais, S.T.: Latent semantic indexing (LSI) and TREC-2. In Proceedings of TREC-2, NIST Special Publication, #500-215, 105–115, 1994.Google Scholar
  9. [9]
    Evans, D.A., Milic-Frayling, N., and Lefferts, R.G.: CLARIT TREC-4 experiments. In Proceedings of TREC-4, NIST Special Publication, #500-236, 305–321, 1996.Google Scholar
  10. [10]
    Fagan, J.: Experiments in automatic phrase indexing for document retrieval: A comparison of syntactic and non-syntactic methods. PhD thesis, Computer Science Department, Cornell University. 1987.Google Scholar
  11. [11]
    Fagan, J.: The effectiveness of a nonsytactic approach to automatic phrase indexing for document retrieval. Journal of the American Society for Information Science, 40(2), 115–132, 1989.CrossRefGoogle Scholar
  12. [12]
    Hawkings, D. and Thistlewaite, P.: Proximity operators — So near and yet so far. In Proceedings of TREC-4, NIST Special Publication #500-236, 131–143, 1996.Google Scholar
  13. [13]
    Hawking, D., and Thistlewaite, P.: Methods for information server selection. ACM Transactions on Information Systems, 17(1), 40–76, 1999.CrossRefGoogle Scholar
  14. [14]
    Hawking, D. and Craswell, N.: Overview of the TREC-2001 Web track. In Proceedings TREC-10, NIST Special Publication #500-250, 61–67, 2002.Google Scholar
  15. [15]
    Hull, D.A., Grefenstette, G., Schulze, B.M., Gaussier, E., Schutze, H. and Pedersen, J.O.: Xerox TREC-5 site report: Routing, filtering, NLP, and Spanish tracks. In Proceedings of TREC-5, NIST Special Publication #500-238, 167–180, 1997.Google Scholar
  16. [16]
    Jansen, B.J., Spink, A. and Saracevic, T.: Real life, real users and real needs: A study and analysis of user queries on the Web. Information Processing and Management, 36(2), 207–227, 2000.CrossRefGoogle Scholar
  17. [17]
    Mitra, M., Buckley, C., Singhal, A., and Cardie, C.: An analysis of statistical and syntactic phrases. In Proceedings of RIAO-97, 1997.Google Scholar
  18. [18]
    Papka, R., and Allan, J.: Document classification using multiword features. In Proceedings of CIKM-98, ACM Press, 124–131. 1998.Google Scholar
  19. [19]
    Rasolofo, Y., Abbaci, F. and Savoy, J.: Approaches to collection selection and results merging for distributed information ietrieval. In Proceedings of CIKM-2001, ACM Press, 191–198, 2001.Google Scholar
  20. [20]
    Rasolofo, Y., Hawking, D., Savoy, J.: Result Merging Strategies for a Current News MetaSearcher. Information Processing & Management, 2003 (to appear).Google Scholar
  21. [21]
    Robertson, S.E., and Spark Jones, K.: Relevance weighting of search terms. Journal of the American Society for Information Science, 27(3), 129–146, 1976.CrossRefGoogle Scholar
  22. [22]
    Robertson, S.E., Walker, S., and Beaulieu, M.: Experimentation as a way of life: Okapi at TREC. Information Processing & Management, 36(1), 95–108, 2000.CrossRefGoogle Scholar
  23. [23]
    Salton G., and McGill, M.J.: Introduction to modern information retrieval. McGraw-Hill, 1983.Google Scholar
  24. [24]
    Savoy, J., and Rasolofo, Y.: Report on the TREC-10 experiment: Distributed collections and entrypage searching. In Proceedings TREC-10, NIST Special Publication #500-250, 586–595, 2002.Google Scholar
  25. [25]
    Silverstein, C., Henzinger, M., Marais, H. and Moricz, M.: Analysis of a very large Web search engine query log. ACM SIGIR Forum, 33(1), 6–12, 1999.CrossRefGoogle Scholar
  26. [26]
    Singhal, A., and Kaszkiel, M.: A case study in Web search using TREC algorithms. In Proceedings of WWW’10, Elsevier, 708–716, 2001.Google Scholar
  27. [27]
    Spink, A. Wolfram, D., Jansen, B.J., and Saracevic, T.: Searching the Web: The public and their queries. Journal of the American Society for Information Science and Technology, 52(3), 226–234, 2001.CrossRefGoogle Scholar
  28. [28]
    Strzalkowski, T., Guthrie, L., Karlgren, J., Leistensnider, J., Lin, F., Perez-Carballo, J., Straszheim, T., Wang, J., and Wilding, J.: Natural language information retrieval: TREC-5 report. In Proceedings TREC-5, NIST Special Publication #500-238, 291–313, 1997.Google Scholar
  29. [29]
    Voorhees, E.M.: Overview of the TREC 2001 question answering track. In Proceedings TREC-10, NIST Special Publication #500-250, 42–51, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Yves Rasolofo
    • 1
  • Jacques Savoy
    • 1
  1. 1.Université de NeuchâtelNeuchatelSwitzerland

Personalised recommendations