On the Development of Critics in Evolutionary Computation Artists

  • Juan Romero
  • Penousal Machado
  • Antonio Santos
  • Amilcar Cardoso
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2611)


One of the problems in the use of evolutionary computer systems in artistic tasks is the lack of artificial models of human critics. In this paper, based on the state of the art and on our previous related work, we propose a general architecture for an artificial art critic, and a strategy for the validation of this type of system. The architecture includes two modules: the analyser, which does a pre-processing of the artwork, extracting several measurements and characteristics; and the evaluator, which, based on the output of the analyser, classifies the artwork according to a certain criteria. The validation procedure consists of several stages, ranging from author and style discrimination to the integration of critic in a dynamic environment together with humans.


Genetic Algorithm Evolutionary Computation Greyscale Image Evolutionary Computation Technique Human Critic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Johnson, C., Romero, J.: “Genetic Algorithms in Visual Art and Music”. In Leonardo. MIT Press. Cambridge MA Vol 35, (2). pp. 175–184. 2002Google Scholar
  2. 2.
    Bentley, P. J.: “Is Evolution Creative?”. In P. J. Bentley and D. Corne (Eds.), Proceedings of the AISB’99 Symposium on Creative Evolutionary Systems (CES), pp. 28–34. Published by The Society for the Study of Artificial Intelligence and Simulation of Behaviour (AISB). Edinburgh.1999.Google Scholar
  3. 3.
    Karnow, C. E.A.: “In collaboration with machines”. Leonardo, (30):4 pp 248. 1997Google Scholar
  4. 4.
    Burton, A. R., Vladimirova, T.: “Generation of musical sequences with genetic techniques”. Computer Music Journal, 23(4):59–73, Winter 1999.CrossRefGoogle Scholar
  5. 5.
    Romero, J., Santos, A., Dorado, J., Arcay, B., Rodriguez, J.: “Evolutionary Computation System for Musical Composition”. In Mathematics and Computers in Modern Science, pp. 97–102. World Scientific and Engineering Society Press. 2000Google Scholar
  6. 6.
    Todd, P.M.: “Evolving musical diversity”. In Andrew Patrizio, Geraint A. Wiggins, and Helen Pain, Eds. Proceedings of the AISB’99 Symposium on Creative Evolutionary Systems. Society for Artificial Intelligence and the Simulation of Behaviour, pp. 40–48, 1999.Google Scholar
  7. 7.
    Biles, J. A.: “GenJam in Perspective: A Tentative Taxonomy for Genetic Algorithm Music and Art Systems”. In Wu, A.S. (Ed.), Workshop GAVAM 2000 Genetic and Evolutionary Computation Conference, pp. 133–136. Morgan Kaufmann. San Francisco CA. 2000.Google Scholar
  8. 8.
    Horowitz, D.: “Generating rhythms with genetic algorithms”. In Proceedings of the 1994 International Computer Music Conference, 1994.Google Scholar
  9. 9.
    Jacob, B.L.: “Composing with genetic algorithms”. In Proceedings of the 1995 International Computer Music Conference, pages 452–455, 1995.Google Scholar
  10. 10.
    Jacob, B.L.: “Algorithmic composition as a model of creativity”. Organized Sound, 1(3):157–165, 1996.CrossRefGoogle Scholar
  11. 11.
    Moroni, A., Zuben, Von F., Manzoli, J.: “Arbitration: Human machine interaction in musical domains”. In Leonardo. MIT Press. Cambridge MA, Vol. 35, (2). pp. 185–189. 2002.Google Scholar
  12. 12.
    Pazos, A., Santos, A., Dorado, J. and Romero, J.J.: “Genetic music compositor”. In P. Angeline, Z. Michalewicz, M. Schoenhauer, X. Yao, and A. Zalzala, Eds, Proceedings of the 1999 Congress on Evolutionary Computation, pp. 885–890, Vol. 2. IEEE Press. 1999.Google Scholar
  13. 13.
    Pazos, A., Santos, A., Dorado, J. and Romero, J.J.: “Adaptive aspects of rhythmic composition: Genetic music”. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, Eds., Proceedings of the Genetic and Evolutionary Computation Conference, page 1794, Vol. 2. Morgan Kaufmann, 1999.Google Scholar
  14. 14.
    Putnam, J. B.: “Genetic programming of music”. Technical Report, New Mexico Institute of Mining and Technology, 1994.Google Scholar
  15. 15.
    Ralley, D.: “Genetic algorithms as a tool for melodic development”. In Proceedings of the 1995 International Computer Music Conference, pp. 501–502. 1995.Google Scholar
  16. 16.
    Haggerty, M.: “Evolution by aesthetics, an interview with W. Latham and S. Todd”..IEEE Computer Graphics, 11(2):5–9, March 1991.Google Scholar
  17. 17.
    Machado, P., Cardoso, A.: “NEvAr — The Assessment of an Evolutionary Art Tool”. In: Wiggins, G. (Ed.). Proceedings of the AISB’00 Symposium on Creative & Cultural Aspects and Applications of AI & Cognitive Science, Birmingham, UK, 2000.Google Scholar
  18. 18.
    Rosenman, M.A.: “The generation of form using evolutionary approach”. In D. Dasgupta and A. Michalewicz, Eds., Evolutionary algorithms in Engineering Applications. Springer, 1997.Google Scholar
  19. 19.
    Rowland, D. A.: “Computer Graphics Control over Human Face and Head Appearance”, Genetic Optimisation of Perceptual Characteristics. PhD thesis, University of St. Andrews, 1998.Google Scholar
  20. 20.
    Rowland, D. A, Biocca, F.: “Evolutionary Cooperative Design Methodology: The Genetic Sculpture Park”. In Leonardo. MIT Press. Cambridge MA Vol 35, (2). Pp. 193–196. 2002.Google Scholar
  21. 21.
    Sims, K.: “Artificial evolution for computer graphics”.Computer Graphics, 25(4):319–328, 1991.CrossRefMathSciNetGoogle Scholar
  22. 22.
    Sims, K.: “Interactive evolution of dynamical systems”. In F.J. Varela and P. Bourgine, Eds., Towards a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, pages 171–178. Mit Press, 1992.Google Scholar
  23. 23.
    Soddu, C.: “Recognizability of the idea: the evolutionary process of Argenia”. In A. Patrizio, G. A. Wiggins, and H. Pain, Eds., Proceedings of the AISB’99 Symposium on Creative Evolutionary Systems. Society for Artifical Intelligence and the Simulation of Behaviour, pages 18–27. 1999.Google Scholar
  24. 24.
    Todd, S. and Latham, W.: “Mutator, a subjective human interface for evolution of computer sculptures”. IBM United Kingdom Scientific Centre Report 248, 1991.Google Scholar
  25. 25.
    Unemi, T.: “SBART 2.4 An IEC Tool for Creating Two-Dimensional Images, Movies and Collages”. In Leonardo. MIT Press. Cambridge MA Vol 35, (2). pp. 189–192. 2002Google Scholar
  26. 26.
    Biles, J. A.: “GenJam: A genetic algorithm for generating jazz solos”, In Proceedings of the 1994 International Computer Music, 1994.Google Scholar
  27. 27.
    Papadopoulos, G. and Wiggins, G.A.: “A Genetic Algorithm for the Generation of Jazz Melodies”, In SteP’98. Proceedings of STeP’98: 8th Finnish Conference on Artificial Intelligence. September 7–9, 1998, Jyväskylä, Finland. 1998.Google Scholar
  28. 28.
    Biles, J. A., Anderson, P. G. and Loggi, L. W., “Neural Network Fitness Functions for an IGA”, in Proceedings of the International ICSC Symposium on Intelligent Industrial Automation (ISA’96) and Soft Computing (SOCO’96), 26–28 March 1996 (Reading, U.K.: ICSC Academic Press, 1996) pp. B39–B44. 1996.Google Scholar
  29. 29.
    Burton, A. R. and Vladimirova, T., “Genetic Algorithms Utilising Neural Network Fitness Evaluation for Musical Composition”, in G.D. Smith, N.C. Steele and R.F. Albrecht Eds., International Conference on Artificial Neural Networks and Genetic Algorithms Norwich, UK. pp. 220–224, Springer, 1997.Google Scholar
  30. 30.
    Spector, L. and Alpern, A.: “Criticism, Culture and the Automatic Generation of Artworks”, In Proceedings Twelfth National Conference on Artificial Intelligence (AAAI-94) August 1–4, pp. 3–8. AAAI Press. 1994.Google Scholar
  31. 31.
    Baluja, S., Pomerleau, D. and Todd, J.: “Towards Automated Artificial Evolution for Computer-Generated Images”, In “Connection Science” 6, No. 2, pp. 325–354. 1994.CrossRefGoogle Scholar
  32. 32.
    Wiggins, G.A., Papadopoulos, G., Phon-Amnuaisuk, S. and Tuson, A.: “Evolutionary Methods for Musical Composition”, In International Journal of Computing Anticipatory Systems, 1(1), 1999.Google Scholar
  33. 33.
    McIntyre, R.A.: “Bach in a Box: The Evolution of Four-Part Baroque Harmony Using Genetic Algorithm”, In Proceedings of the 1994 IEEE International Conference on Evolutionary Computation, pp. 852–857, IEEE Press, 1994.Google Scholar
  34. 34.
    Todd, P.M. and Werner, G.M.: “Frankensteinian Methods for Evolutionary Music Composition”, In N. Griffith and P.M. Todd, Eds., Musical Networks: Parallel Distributed Perception and Performance. Cambridge, MA: MIT Press, 1998.Google Scholar
  35. 35.
    McAlpine, K., Miranda, E. and Hoggar, S.: “Making Music with Algorithms: A Case-Study System”, Computer Music Journal, 23, No. 2, 19–30. 1999.CrossRefGoogle Scholar
  36. 36.
    Miranda, E.: “Granular Synthesis of Sounds by Means of a Cellular Automaton”, Leonardo, No. 4, 297–300. 1995.Google Scholar
  37. 37.
    Greenfield, G. R.: “On the Co-Evolution of Evolving Expressions, International Journal of Computational Intelligence and Applications”, Vol. 2, No. 1, pp. 17–31. 2002CrossRefGoogle Scholar
  38. 38.
    Romero, J: “Metodología Evolutiva para la construcción de modelos cognitivos complejos. Exploración de la ‘creatividad artificial’ en composición musical” (In Spanish). Ph.D. Thesis. University of A Coruña. 2002.Google Scholar
  39. 39.
    Richard Dawkins: “The Blind Watchmaker”. Penguin, 1990.Google Scholar
  40. 40.
    Koza, J.: “Genetic Programming: On the Programming of Computers by Means of Natural Selection”. MIT Press. 1992.Google Scholar
  41. 41.
    Machado, P. and Cardoso, A.: “All the truth about NEvAr”. Applied Intelligence, Special issue on Creative Systems, 16(2):101–119. 2002zbMATHGoogle Scholar
  42. 42.
    Arnheim, R.: “Entropy and Art”, University of California Press, 1971.Google Scholar
  43. 43.
    Arnheim, R.: “Art and Visual Perception: A Psychology of the Creative Eye”, University of California Press, 1954.Google Scholar
  44. 44.
    Machado, P., Dias, A., and Cardoso, A.: “Learning to Colour Greyscale Images”. The Interdisciplinary Journal of Artificial Intelligence and the Simulation of Behaviour, 1(2), 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Juan Romero
    • 1
  • Penousal Machado
    • 2
  • Antonio Santos
    • 1
  • Amilcar Cardoso
    • 3
  1. 1.Creative Computer Line - RNASA Lab - Fac. of Computer ScienceUniversity of CoruñaSpain
  2. 2.Instituto Superior de Engenharia de CoimbraCoimbraPortugal
  3. 3.CISUC - Centre for Informatics and SystemsUniversity of CoimbraCoimbraPortugal

Personalised recommendations