Evolutionary Music and the Zipf-Mandelbrot Law: Developing Fitness Functions for Pleasant Music

  • Bill Manaris
  • Dallas Vaughan
  • Christopher Wagner
  • Juan Romero
  • Robert B. Davis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2611)

Abstract

A study on a 220-piece corpus (baroque, classical, romantic, 12-tone, jazz, rock, DNA strings, and random music) reveals that aesthetically pleasing music may be describable under the Zipf-Mandelbrot law. Various Zipf-based metrics have been developed and evaluated. Some focus on music-theoretic attributes such as pitch, pitch and duration, melodic intervals, and harmonic intervals. Others focus on higher-order attributes and fractal aspects of musical balance. Zipf distributions across certain dimensions appear to be a necessary, but not sufficient condition for pleasant music. Statistical analyses suggest that combinations of Zipf-based metrics might be used to identify genre and/or composer. This is supported by a preliminary experiment with a neural network classifier. We describe an evolutionary music framework under development, which utilizes Zipf-based metrics as fitness functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamic, L.A.: “Zipf, Power-laws, and Pareto — a Ranking Tutorial” (1999) http://ginger.hpl.hp.com/shl/papers/ranking/
  2. 2.
    Balaban, M., Ebcioğlu, K., and Laske, O., (eds.): Understanding Music with AI: Perspectives on Music Cognition. Cambridge: AAAI Press/MIT Press (1992)Google Scholar
  3. 3.
    Cope, D.: Virtual Music, MIT Press Cambridge (2001)Google Scholar
  4. 4.
    Howat, R.: Debussy in Proportion. Cambridge University Press (cited in [16]) Cambridge (1983)Google Scholar
  5. 5.
    Knott, R.: “Fibonacci Numbers and Nature”. http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html (2002)
  6. 6.
    Li, W.: “Zipf’s Law”. http://linkage.rockefeller.edu/wli/zipf/ (2002)
  7. 7.
    Machado, P., Cardoso, A.: “All the truth about NEvAr”. Applied Intelligence, Special issue on Creative Systems, Bentley, P., Corne, D. (eds), 16(2), (2002), 101–119Google Scholar
  8. 8.
    Manaris, B., Purewal, T., and McCormick, C.: “Progress Towards Recognizing and Classifying Beautiful Music with Computers”. 2002 IEEE SoutheastCon, Columbia, SC (2002) 52–57Google Scholar
  9. 9.
    Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman New York (1977)Google Scholar
  10. 10.
    Marillier, C.G.: “Computer Assisted Analysis of Tonal Structure in the Classical Symphony”. Haydn Yearbook 14 (1983) 187–199 (cited in [16])Google Scholar
  11. 11.
    May, M.: “Did Mozart Use the Golden Section?”. American Scientist 84(2). http://www.sigmaxi.org/amsci/issues/Sciobs96/Sciobs96-03MM.html (1996)
  12. 12.
    Meyer, L.B.: Emotion and Meaning in Music. University of Chicago Press Chicago (1956)Google Scholar
  13. 13.
    Meyer, L.B.: “Music and Emotion: Distinctions and Uncertainties”. In Music and Emotion — Theory and Research, Juslin, P.N., Sloboda, J.A. (eds), Oxford University Press Oxford (2001) 341–360Google Scholar
  14. 14.
    Miranda, E.R.: Composing Music with Computers. Focal Press Oxford (2001)Google Scholar
  15. 15.
    Nettheim, N.: “On the Spectral Analysis of Melody”. Interface: Journal of New Music Research 21 (1992) 135–148CrossRefGoogle Scholar
  16. 16.
    Nettheim, N.: “A Bibliography of Statistical Applications in Musicology”. Musicology Australia 20 (1997) 94–106Google Scholar
  17. 17.
    Pareto, V.: Cours d’Economie Politique, Rouge (Lausanne et Paris) (1897) Cited in [9]Google Scholar
  18. 18.
    Salingaros, N..A., and West, B.J.: “A Universal Rule for the Distribution of Sizes”. Environment and Planning B(26) (1999) 909–923Google Scholar
  19. 19.
    Schroeder, M.: Fractals, Chaos, Power Laws. W.H. Freeman New York (1991)MATHGoogle Scholar
  20. 20.
    Stuttgart Neural Network Simulator (SNNS), http://www-ra.informatik.uni-tuebingen.de/SNNS/).
  21. 21.
    Taylor, R.P., Micolich, A.P., and Jonas, D.: “Fractal Analysis Of Pollock’s Drip Paintings”. Nature, vol. 399, (1999), 422http://materialscience.uoregon.edu/taylor/art/Nature1.pdf CrossRefGoogle Scholar
  22. 22.
    The Classical Music Archives. http://www.classicalarchives.com.
  23. 23.
    Voss, R.F., and Clarke, J.: “1/f Noise in Music and Speech”. Nature 258 (1975) 317–318CrossRefGoogle Scholar
  24. 24.
    Voss, R.F., and Clarke, J.: “1/f Noise in Music: Music from 1/f Noise”. Journal of Acoustical Society of America 63(1) (1978) 258–263CrossRefGoogle Scholar
  25. 25.
    Zipf, G.K.: Human Behavior and the Principle of Least Effort. Addison-Wesley New York (1972) (original publication Hafner Publishing Company, 1949)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Bill Manaris
    • 1
  • Dallas Vaughan
    • 1
  • Christopher Wagner
    • 1
  • Juan Romero
    • 2
  • Robert B. Davis
    • 3
  1. 1.Computer Science DepartmentCollege of CharlestonCharlestonUSA
  2. 2.Creative Computer Group - RNASA Lab - Faculty of Computer ScienceUniversity of A CoruñaSpain
  3. 3.Department of Mathematics and StatisticsMiami UniversityHamiltonUSA

Personalised recommendations