Automatic Verification of a Turbogas Control System with the Murφ Verifier

  • Giuseppe Della Penna
  • Benedetto Intrigila
  • Igor Melatti
  • Michele Minichino
  • Ester Ciancamerla
  • Andrea Parisse
  • Enrico Tronci
  • Marisa Venturini Zilli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2623)


Automatic analysis of Hybrid Systems poses formidable challenges both from a modeling as well as from a verification point of view. We present a case study on automatic verification of a Turbogas Control System (TCS) using an extended version of the Mur. verifier. TCS is the heart of ICARO, a 2MW Co-generative Electric Power Plant. For large hybrid systems, as TCS is, the modeling effort accounts for a significant part of the whole verification activity. In order to ease our modeling effort we extended the Murφ verifier by importing the C language long double type (finite precision real numbers) into it.

We give experimental results on running our extended Murφon our TCS model. For example using Mur. we were able to compute an admissible range of values for the variation speed of the user demand of electric power to the turbogas.


Hybrid System Hash Table Discrete Time System Compressor Pression Reachable State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
  2. [2]
    R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded systems. IEEE Trans. on Software Engineering, 22, 1996.Google Scholar
  3. [3]
    A. Bobbio, E. Ciancamerla, G. Franceschinis, R. Gaeta, M. Minichino, and L. Portinale. Methods of increasing modelling power for safety analysis, applied to a turbine digital control system. In Proc. of 21st International Conference on ”Computer Safety, Reliability and Security” (SAFECOMP), LNCS, Catania, Italy, Sept 2002. Springer.Google Scholar
  4. [4]
    A. Bobbio, E. Ciancamerla, M. Gribaudo, A. Horvath, M. Minichino, and E. Tronci. Model checking based on fluid petri nets for the temperature control system of the icaro co-generative plant. In Proc. of 21st International Conference on “Computer Safety, Reliability and Security” (SAFECOMP), LNCS, Catania, Italy, Sept 2002. Springer.Google Scholar
  5. [5]
    A. Bobbio, S. Bologna, M. Minichino, E. Ciancamerla, P. Incalcaterra, C. Kropp, and E. Tronci. Advanced tecniques for safety analysis applied to the gas turbine control system of icaro co generative plant. In Proc. of X Convegno TESEC, Genova, Italy, June 2001.Google Scholar
  6. [6]
    R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans. on Computers, C-35(8), Aug 1986.Google Scholar
  7. [7]
  8. [8]
    N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear programming problem. USSR Computational Mathematics and Mathematical Physics, 8(6):282–293, 1968.zbMATHCrossRefGoogle Scholar
  9. [9]
    D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol verification as a hardware design aid. In IEEE International Conference on Computer Design: VLSI in Computers and Processors, pages 522–5, 1992.Google Scholar
  10. [10]
    ENEA. Proprietary ICARO Documentation.Google Scholar
  11. [11]
    N. Halbwachs. Delay analysis in synchronous programs. In Proc. of: Computer Aided Verification (CAV), number 697 in LNCS, pages 333–346. Springer, 1993.Google Scholar
  12. [12]
    N. Halbwachs, P. Raymond, and Y.-E. Proy. Verification of linear hybrid systems by means of convex approximation. In Proc. of: Static Analysis Symposium (SAS), number 864 in LNCS, pages 223–237. Springer, 1994.Google Scholar
  13. [13]
    T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: The next generation. In Proc. of the 16th Annual IEEE Real-time Systems Symposium (RTSS), pages 56–65. IEEE, 1995.Google Scholar
  14. [14]
    T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid systems. Software Tools for Technology Transfer, 1, 1997.Google Scholar
  15. [15]
    A. J. Hu, G. York, and D. L. Dill. New techniques for efficient verification with implicitily conjoined bdds. In 31st IEEE Design Automation Conference, pages 276–282, 1994.Google Scholar
  16. [16]
    R.P. Kurshan and K.L. McMillan. Analysis of digital circuits through symbolic reduction. IEEECAD, 10(11):1356–1371, November 1991.Google Scholar
  17. [17]
    Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal: Status and developments. In Orna Grumberg, editor, CAV97, number 1254 in LNCS, pages 456–459. Springer-Verlag, Jun 1997.Google Scholar
  18. [18]
    K. L. McMillan. Symbolic model checking. Kluwer Academic Publishers, Massachusetts, 1993.zbMATHGoogle Scholar
  19. [19]
  20. [20]
    G. Della Penna, B. Intrigila, E. Tronci, and M. Venturini Zilli. Exploiting transition locality in the disk based murφ verifier. In Proc. of 4th International Conference on “Formal Methods in Computer Aided Verification” (FMCAD), LNCS, Portland, Oregon, USA, Nov 2002. Springer.Google Scholar
  21. [21]
  22. [22]
  23. [23]
    E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli. Exploiting transition locality in automatic verification. In IFIP WG 10.5 Advanced Research Working Conference on: Correct Hardware Design and Verification Methods (CHARME). LNCS, Springer, Sept 2001.Google Scholar
  24. [24]
    E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli. A probabilistic approach to space-time trading in automatic verification of concurrent systems. In Proc. of 8th IEEE Asia-Pacific Software Engineering Conference (APSEC), Macau SAR, China, Dec 2001. IEEE Computer Society Press.Google Scholar
  25. [25]
    A. L. Turk, S. T. Probst, and G. J. Powers. Verification of real-time chemical processing systems. In Hybrid and Real-Time Systems, number 1201 in LNCS, pages 259–272. Springer, 1997.CrossRefGoogle Scholar
  26. [26]

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Giuseppe Della Penna
    • 1
  • Benedetto Intrigila
    • 1
  • Igor Melatti
    • 1
  • Michele Minichino
    • 3
  • Ester Ciancamerla
    • 3
  • Andrea Parisse
    • 1
  • Enrico Tronci
    • 2
  • Marisa Venturini Zilli
    • 2
  1. 1.Dip. di InformaticaUniversità di L’AquilaCoppitoItaly
  2. 2.Dip. di InformaticaUniversità di Roma “La Sapienza”RomaItaly
  3. 3.ENEAVia AnguillareseItaly

Personalised recommendations