Advertisement

A Program Logic for Handling Java Card’s Transaction Mechanism

  • Bernhard Beckert
  • Wojciech Mostowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2621)

Abstract

In this paper we extend a program logic for verifying JAVA CARD applications by introducing a “throughout” operator that allows us to prove “strong” invariants. Strong invariants can be used to ensure “rip out” properties of JAVACARD programs (properties that are to be maintained in case of unexpected termination of the program). Along with introducing the “throughout” operator, we show how to handle the JAVACARD transaction mechanism (and, thus, conditional assignments) in our logic. We present sequent calculus rules for the extended logic.

Keywords

Program Logic Smart Card Array Element Sequent Calculus Dynamic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Ahrendt, T. Baar, B. Beckert, M. Giese, R. Hähnle, W. Menzel, W. Mostowski, and P. H. Schmitt. The KeY system: Integrating object-oriented design and formal methods. In R.-D. Kutsche and H. Weber, editors, Proceedings, Fundamental Approaches to Software Engineering (FASE), Grenoble, France, LNCS 2306, pages 327–330. Springer, 2002.Google Scholar
  2. 2.
    B. Beckert. A dynamic logic for the formal verification of JAVACARD programs. In I. Attali and T. Jensen, editors, Revised Papers, JAVA on Smart Cards: Programming and Security, Cannes, France, LNCS 2041, pages 6–24. Springer, 2001.CrossRefGoogle Scholar
  3. 3.
    B. Beckert and B. Sasse. Handling JAVA’s abrupt termination in a sequent calculus for Dynamic Logic. In B. Beckert, R. France, R. Hähnle, and B. Jacobs, editors, Proceedings, IJCAR Workshop on Precise Modelling and Deduction for Object-oriented Software Development, Siena, Italy, pages 5–14. TR DII 07/01, Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Siena, 2001.Google Scholar
  4. 4.
    B. Beckert and S. Schlager. A sequent calculus for first-order dynamic logic with trace modalities. In R. Gorè, A. Leitsch, and T. Nipkow, editors, Proceedings, International Joint Conference on Automated Reasoning, Siena, Italy, LNCS 2083, pages 626–641. Springer, 2001.Google Scholar
  5. 5.
    J. C. Bradfield, J. K. Filipe, and P. Stevens. Enriching OCL using observational mu-calculus. In R.-D. Kutsche and H. Weber, editors, Proceedings, Fundamental Approaches to Software Engineering (FASE), Grenoble, France, LNCS2306, pages 203–217. Springer, 2002.Google Scholar
  6. 6.
    Z. Chen. JAVACARD Technology for Smart Cards. Addison Wesley, 2000.Google Scholar
  7. 7.
    D. Harel. Dynamic Logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, Volume II: Extensions of Classical Logic. Reidel, 1984.Google Scholar
  8. 8.
    D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.Google Scholar
  9. 10.
    D. Kozen and J. Tiuryn. Logic of programs. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, chapter 14, pages 89–133. Elsevier, 1990.Google Scholar
  10. 11.
    W. Mostowski. Rigorous development of JAVACARD applications. In T. Clarke, A. Evans, and K. Lano, editors, Proc. Fourth Workshop on Rigorous Object-Oriented Methods, London, 2002. http://www.cs.chalmers.se/~woj/papers/room2002.ps.gz.
  11. 12.
    V. R. Pratt. Semantical considerations on Floyd-Hoare logic. In Proceedings, 18th Annual IEEE Symposium on Foundation of Computer Science, 1977.Google Scholar
  12. 13.
    Sun Microsystems, Inc. JAVACARD 2.2 Application Programming Interface, 2002.Google Scholar
  13. 14.
    Sun Microsystems, Inc. JAVACARD 2.2 Runtime Environment Specification, 2002.Google Scholar
  14. 15.
    Sun Microsystems, Inc. JAVACARD 2.2 Virtual Machine Specification, 2002.Google Scholar
  15. 16.
    K. Trentelman and M. Huisman. Extending JML specifications with temporal logic. In Algebraic Methodology And Software Technology (AMAST’ 02), LNCS 2422, pages 334–348. Springer-Verlag, 2002.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Bernhard Beckert
    • 1
  • Wojciech Mostowski
    • 2
  1. 1.Institute for Logic, Complexity, and Deduction SystemsUniversity of KarlsruheGermany
  2. 2.Computing Science DepartmentChalmers University of TechnologyGöteborgSweden

Personalised recommendations