Advertisement

A Set of Performance and Dependability Analysis Components for CADP

  • Holger Hermanns
  • Christophe Joubert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2619)

Abstract

This paper describes a set of analysis components that open the way to perform performance and dependability analysis with the CADP toolbox, originally designed for verifying the functional correctness of Lotos specifications. Three new tools (named BCG_STEADY, BCG_TRANSIENT and DETERMINATOR) have been added to the toolbox. The approach taken fits well within the existing architecture of CADP which doesn’t need to be altered to enable performance evaluation.

Keywords

Model Checker Markov Decision Process Markov Chain Model Label Transition System Delay Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Bernardo, W.R. Cleaveland, S.T. Sims, and W.J. Stewart. TwoTowers: A Tool Integrating Functional and Performance Analysis of Concurrent Systems. In Proc. FORTE/PSTV’98, p. 457–467, Kluwer, 1998.Google Scholar
  2. 2.
    G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7: GRaphical Editor and Analyzer for Timed and Stochastic Petri Nets. Perf. Eval., 24(1–-2):47–68, 1995.zbMATHCrossRefGoogle Scholar
  3. 3.
    G. Ciardo, A.S. Miner. SMART: Simulation and Markovian Analyzer for Reliability and Timing. In Proc. IPDS’96, p. 60, IEEE CS Press, 1996.Google Scholar
  4. 4.
    G. Ciardo, J. Muppala, and K. Trivedi. SPNP: stochastic Petri net package. In Proc. PNPM’89, p. 142–151, IEEE CS Press, 1989.Google Scholar
  5. 5.
    G. Ciardo and R. Zijal. Well-defined stochastic Petri nets. In Proc. MASCOTS’96, p. 278–284, IEEE CS Press, 1996.Google Scholar
  6. 6.
    D.D. Deavours and W.H. Sanders. An efficient well-specified check. In Proc. PNPM’99, p. 124–133, IEEE CS Press, 1999.Google Scholar
  7. 7.
    D.D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J.M. Doyle, W. H. Sanders, and P.G. Webster. The Möbius Framework and Its Implementation. IEEE Trans. on Softw. Eng., 28(10):956–969, 2002.CrossRefGoogle Scholar
  8. 8.
    H. Garavel and H. Hermanns. On Combining Functional Verification and Performance Evaluation using CADP. In Proc. FME’02. LNCS 2391:410–429, 2002.Google Scholar
  9. 9.
    H. Garavel and F. Lang. SVL: A Scripting Language for Compositional Verification. In Proc. FORTE/PSTV 2001, p. 377–394, Kluwer, 2001.Google Scholar
  10. 10.
    H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. EASST Newsletter, 4:13–24, 2002.Google Scholar
  11. 11.
    R. German, A. van Moorsel, M.A. Qureshi, and W.H. Sanders. Algorithms for the Generation of State-Level Representations of Stochastic Activity Networks with General Reward Structures. IEEE Trans. on Softw. Eng., 22(9):603–614, 1996.CrossRefGoogle Scholar
  12. 12.
    S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process Algebra-Based Approach to Performance Modelling. In Proc. TOOLS’94. LNCS 794:353–368, 1994.Google Scholar
  13. 13.
    H. Hermanns. Interactive Markov Chains and the Quest for Quantified Quality. LNCS 2428, 2002.zbMATHGoogle Scholar
  14. 14.
    H. Hermanns. Construction and Verification of Performance and Reliability Models. Bulletin of the EATCS, 74:135–154, 2001.zbMATHMathSciNetGoogle Scholar
  15. 15.
    H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and M. Siegle. Compositional performance modelling with the TIPPtool. Perf. Eval., 39(1–4):5–35, January 2000.zbMATHCrossRefGoogle Scholar
  16. 16.
    H. Hermanns and J.P. Katoen. Automated compositional Markov chain generation for a plain-old telephony system. Sci. of Comp. Prog., 36(1):97–127, 2000.zbMATHCrossRefGoogle Scholar
  17. 17.
    H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A Markov Chain Model Checker. In Proc. TACAS’00. LNCS 1785:347–362, 2000.Google Scholar
  18. 18.
    K.S. Kundert. Sparse matrix techniques. In Circuit analysis, Simulation and Design 3, North-Holland, 1986.Google Scholar
  19. 19.
    A. Marsan, G. Balbo, and G. Conte. A Class of Generalized Stochastic Petri Nets for the Performance Evaluation of Multiprocessor Systems. ACM Trans. on Comp. Sys., 2(2):93–122, 1984.CrossRefGoogle Scholar
  20. 20.
    M.L. Puterman. Markov Decision Processes. John Wiley, 1994.Google Scholar
  21. 21.
    W.H. Sanders and J.F. Meyer. Stochastic Activity Networks: Formal Definitions and Concepts. In Proc. FMPA 2000. LNCS 2090:315–343, 2001.Google Scholar
  22. 22.
    W.H. Sanders, W.D. Oball, M.A. Qureshi, and F.K. Widjanarko. The UltraSAN modeling environment. Perf. Eval., 24(1):89–115, 1995.zbMATHCrossRefGoogle Scholar
  23. 23.
    W.J. Stewart. Introduction to the numerical solution of Markov chains. Princeton University Press, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Holger Hermanns
    • 1
    • 2
  • Christophe Joubert
    • 3
  1. 1.Department of Computer ScienceUniversity of TwenteAE EnschedeThe Netherlands
  2. 2.Department of Computer ScienceSaarland UniversitySaarbrückenGermany
  3. 3.INRIA Rhône-Alpes / VASYMontbonnot Saint-MartinFrance

Personalised recommendations