Counter-Example Guided Predicate Abstraction of Hybrid Systems

  • Rajeev Alur
  • Thao Dang
  • Franjo Ivančić1
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2619)


Predicate abstraction has emerged to be a powerful technique for extracting finite-state models from infinite-state systems, and has been recently shown to enhance the effectiveness of the reachability computation techniques for hybrid systems. Given a hybrid system with linear dynamics and a set of linear predicates, the verifier performs an on-the-fly search of the finite discrete quotient whose states correspond to the truth assignments to the input predicates. The success of this approach depends on the choice of the predicates used for abstraction. In this paper, we focus on identifying these predicates automatically by analyzing spurious counter-examples generated by the search in the abstract state-space. We present the basic techniques for discovering new predicates that will rule out closely related spurious counter-examples, optimizations of these techniques, implementation of these in the verification tool, and case studies demonstrating the promise of the approach.


Hybrid System Abstract State Reachable State Abstract System Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138:3–34, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivančić, V. Kumar, I. Lee, P. Mishra, G. Pappas, and O. Sokolsky. Hierarchical modeling and analysis of embedded systems. Proceedings of the IEEE, 91(1), January 2003.Google Scholar
  3. 3.
    R. Alur, T. Dang, and F. Ivačić. Reachability analysis of hybrid systems via predicate abstraction. In Hybrid Systems: Computation and Control, Fifth International Workshop, LNCS 2289. Springer-Verlag, 2002.Google Scholar
  4. 4.
    R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R. Alur, A. Itai, R.P. Kurshan, and M. Yannakakis. Timing verification by successive approximation. Information and Computation, 118(1):142–157, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate reachability analysis of piecewise-linear dynamical systems. In Hybrid Systems: Computation and Control, Third International Workshop, LNCS 1790, pages 21–31. 2000.Google Scholar
  7. 7.
    T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean programs. In SPIN 2000 Workshop on Model Checking of Software, LNCS 1885. 2000.Google Scholar
  8. 8.
    S. Cameron. A comparison of two fast algorithms for computing the distance between convex polyhedra. IEEE Transactions on Robotics and Automation, 13(6):915–920, 1997.CrossRefGoogle Scholar
  9. 9.
    A. Chutinan and B.K. Krogh. Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In Hybrid Systems: Computation and Control, Second International Workshop, LNCS 1569, pages 76–90. 1999.Google Scholar
  10. 10.
    E. Clarke, A. Fehnker, Z. Han, B. Krogh, O. Stursberg, and M. Theobald. Verification of hybrid systems based on counterexample-guided abstraction refinement. In Tools and Algorithms for the Construction and Analysis of Systems, 2003.Google Scholar
  11. 11.
    E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction refinement. In Computer Aided Verification, pages 154–169, 2000.Google Scholar
  12. 12.
    E.M. Clarke and R.P. Kurshan. Computer-aided Verification. IEEE Spectrum, 33(6):61–67, 1996.CrossRefGoogle Scholar
  13. 13.
    J.C. Corbett, M.B. Dwyer, J. Hatcli., S. Laubach, C.S. Pasareanu, Robby, and H. Zheng. Bandera: Extracting finite-state models from Java source code. In Proceedings of 22nd International Conference on Software Engineering. 2000.Google Scholar
  14. 14.
    P. Cousot and R. Cousot. Abstract interpretation: a uniffied lattice model for static analysis of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM Symposium on Principles of Programming Languages, 1977.Google Scholar
  15. 15.
    G. Das and D. Joseph. The complexity of minimum convex nested polyhedra. In Canadian Conference on Computational Geometry, 1990.Google Scholar
  16. 16.
    C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In Hybrid Systems III: Verification and Control, LNCS 1066. Springer-Verlag, 1996.Google Scholar
  17. 17.
    D. Dobkin and D. Kirkpatrick. Determining the separation of preprocessed polyhedra — a unified approach. In Proc. of ICALP’90, pages 400–413, 1990.Google Scholar
  18. 18.
    H. Edelsbrunner and F.P. Preparata. Minimum polygon separation. Information and Computation, 77:218–232, 1987.CrossRefMathSciNetGoogle Scholar
  19. 19.
    T.A. Henzinger, P. Ho, and H. Wong-Toi. HyTech: the next generation. In Proceedings of the 16th IEEE Real-Time Systems Symposium, pages 56–65, 1995.Google Scholar
  20. 20.
    G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering, 23(5):279–295, 1997.CrossRefMathSciNetGoogle Scholar
  21. 21.
    G.J. Holzmann and M.H. Smith. Automating software feature Verification. Bell Labs Technical Journal, 5(2):72–87, 2000.CrossRefGoogle Scholar
  22. 22.
    K. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Springer International Journal of Software Tools for Technology Transfer, 1, 1997.Google Scholar
  23. 23.
    C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving abstractions for the Verification of concurrent systems. Formal Methods in System Design Volume 6, Issue 1, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Rajeev Alur
    • 1
  • Thao Dang
    • 2
  • Franjo Ivančić1
    • 1
  1. 1.University of Pennsylvania

Personalised recommendations