Verification of Hybrid Systems Based on Counterexample-Guided Abstraction Refinement

  • Edmund Clarke
  • Ansgar Fehnker
  • Zhi Han
  • Bruce Krogh
  • Olaf Stursberg
  • Michael Theobald
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2619)


Hybrid dynamic systems include both continuous and discrete state variables. Properties of hybrid systems, which have an infinite state space, can often be verified using ordinary model checking together with a finite-state abstraction. Model checking can be inconclusive, however, in which case the abstraction must be refined. This paper presents a new procedure to perform this refinement operation for abstractions of infinite-state systems, in particular of hybrid systems. Following an approach originally developed for finite-state systems [1],[2], the refinement procedure constructs a new abstraction that eliminates a counterexample generated by the model checker. For hybrid systems, analysis of the counterexample requires the computation of sets of reachable states in the continuous state space.We showhowsuch reachability computations with varying degrees of complexity can be used to refine hybrid system abstractions efficiently. A detailed example illustrates our counterexample-guided refinement procedure. Experimental results for a prototype implementation of the procedure indicate its advantages over existing methods.


Model Check Hybrid System Abstract Model Successor State Safety Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: CAV. Volume 1855 of LNCS, Springer (2000) 154–169Google Scholar
  2. 2.
    Kurshan, R.: Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach. Princeton University Press (1994)Google Scholar
  3. 3.
    Silva, B., Stursberg, O., Krogh, B., Engell, S.: An assessment of the current status of algorithmic approaches to the verification of hybrid systems. In: IEEE Conf. on Decision and Control. (2001) 2867–2874Google Scholar
  4. 4.
    Henzinger, T., Minea, M., Prabhu, V.: Assume-guarantee reasoning for hierarchical hybrid systems. In: HSCC. Volume 2034 of LNCS, Springer (2001) 275–290Google Scholar
  5. 5.
    Frehse, G., Stursberg, O., Engell, S., Huuck, R., Lukoschus, B.: Modular analysis of discrete controllers for distributed hybrid systems. In: IFACWorld Congress. (2002)Google Scholar
  6. 6.
    Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid systems. Proceedings of the IEEE 88 (2000) 971–984Google Scholar
  7. 7.
    Alur, R., Dang, T., Ivancic, F.: Reachability analysis of hybrid systems via predicate abstraction. In: HSCC. Volume 2289 of LNCS, Springer (2002) 35–48Google Scholar
  8. 8.
    Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: HSCC. Volume 2289 of LNCS, Springer (2002) 465–478Google Scholar
  9. 9.
    Chutinan, A., Krogh, B.: Verification of infinite-state dynamic systems using approximate quotient transition systems. IEEE Transactions on Automatic Control 46 (2001) 1401–1410zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Clarke, E., Gupta, A., Kukula, J., Strichman, O.: Sat based abstraction-refinement using ilp and machine learning techniques. In: CAV. LNCS, Springer (2002)Google Scholar
  11. 11.
    Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate abstraction of c programs. In: PLDI. SIGPLAN 36(5) (2001)Google Scholar
  12. 12.
    Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Symp. on Principles of Programming Languages, ACM Press (2002) 58–70Google Scholar
  13. 13.
    Jeannet, B., Halbwachs, N., Raymond, P.: Dynamic Partitioning in Analyses of Numerical Properties. In: Static Analysis Symposium (1999), 39–50Google Scholar
  14. 14.
    Alur, R., Dang, T., Ivančić, F.: Counter-Example Guided Predicate Abstraction of Hybrid Systems. In: TACAS, Springer (2003)Google Scholar
  15. 15.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)Google Scholar
  16. 16.
    Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and Counterexample-Guided Refinement in Model Checking of Hybrid Systems. Technical report CMU-CS-03-104. Download from
  17. 17.
    Lafferriere, G., Pappas, G., Yovine, S.: A new class of decidable hybrid systems. In: HSCC. LNCS 1569, Springer (1999) 103–116Google Scholar
  18. 18.
    Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? In: Symposium on Theory of Computing, ACM Press (1995) 373–382Google Scholar
  19. 19.
    Dang, T., Maler, O.: Reachability analysis via face lifting. In: HSCC. LNCS 1386 (1998)Google Scholar
  20. 20.
    Chutinan, A., Krogh, B.: Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: HSCC. LNCS 1569, Springer Verlag (1999) 76–90Google Scholar
  21. 21.
    Greenstreet, M., Mitchell, I.: Reachability analysis using polygonal projections. In: HSCC. LNCS 1569, Springer (1999) 103–116Google Scholar
  22. 22.
    Kurzhanski, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: HSCC. LNCS 1790, Springer (2000) 203–213Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Edmund Clarke
    • 1
  • Ansgar Fehnker
    • 2
  • Zhi Han
    • 2
  • Bruce Krogh
    • 2
  • Olaf Stursberg
    • 2
    • 3
  • Michael Theobald
    • 1
  1. 1.Computer ScienceCarnegie Mellon UniversityPittsburgh
  2. 2.Electrical and Computer EngineeringCarnegie Mellon UniversityPittsburghPA
  3. 3.Process Control LabUniversity of DortmundGermany

Personalised recommendations